Suppr超能文献

MoeH5:来自莫能菌素生物合成途径的天然糖基随机化酶。

MoeH5: a natural glycorandomizer from the moenomycin biosynthetic pathway.

机构信息

Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine; Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA.

出版信息

Mol Microbiol. 2013 Dec;90(6):1324-38. doi: 10.1111/mmi.12437. Epub 2013 Nov 21.

Abstract

The biosynthesis of the phosphoglycolipid antibiotic moenomycin A attracts the attention of researchers hoping to develop new moenomycin-based antibiotics against multidrug resistant Gram-positive infections. There is detailed understanding of most steps of this biosynthetic pathway in Streptomyces ghanaensis (ATCC14672), except for the ultimate stage, where a single pentasaccharide intermediate is converted into a set of unusually modified final products. Here we report that only one gene, moeH5, encoding a homologue of the glutamine amidotransferase (GAT) enzyme superfamily, is responsible for the observed diversity of terminally decorated moenomycins. Genetic and biochemical evidence support the idea that MoeH5 is a novel member of the GAT superfamily, whose homologues are involved in the synthesis of various secondary metabolites as well as K and O antigens of bacterial lipopolysaccharide. Our results provide insights into the mechanism of MoeH5 and its counterparts, and give us a new tool for the diversification of phosphoglycolipid antibiotics.

摘要

磷酸甘油糖脂抗生素莫能菌素 A 的生物合成引起了研究人员的关注,他们希望开发新的基于莫能菌素的抗生素来对抗耐多药革兰氏阳性感染。在链霉菌加纳亚种(ATCC14672)中,除了最终阶段外,人们对这个生物合成途径的大多数步骤都有详细的了解,在最终阶段,一个五糖中间体被转化为一组异常修饰的最终产物。在这里,我们报告说,只有一个基因 moeH5,编码一个类似于谷氨酰胺酰胺转移酶(GAT)酶超家族的同源物,负责观察到的莫能菌素末端装饰的多样性。遗传和生化证据支持这样一种观点,即 MoeH5 是 GAT 超家族的一个新成员,其同源物参与各种次级代谢产物以及细菌脂多糖 K 和 O 抗原的合成。我们的结果提供了对 MoeH5 及其对应物的机制的深入了解,并为磷酸甘油糖脂抗生素的多样化提供了新的工具。

相似文献

1
MoeH5: a natural glycorandomizer from the moenomycin biosynthetic pathway.
Mol Microbiol. 2013 Dec;90(6):1324-38. doi: 10.1111/mmi.12437. Epub 2013 Nov 21.
2
A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus.
Appl Microbiol Biotechnol. 2016 Sep;100(17):7629-38. doi: 10.1007/s00253-016-7685-3. Epub 2016 Jun 25.
3
Complete characterization of the seventeen step moenomycin biosynthetic pathway.
Biochemistry. 2009 Sep 22;48(37):8830-41. doi: 10.1021/bi901018q.
4
A streamlined metabolic pathway for the biosynthesis of moenomycin A.
Chem Biol. 2007 Mar;14(3):257-67. doi: 10.1016/j.chembiol.2007.01.008.
5
Genetic factors that influence moenomycin production in streptomycetes.
J Ind Microbiol Biotechnol. 2010 Jun;37(6):559-66. doi: 10.1007/s10295-010-0701-1. Epub 2010 Mar 6.
8
Adaptive Optimization Boosted the Production of Moenomycin A in the Microbial Chassis J1074.
ACS Synth Biol. 2021 Sep 17;10(9):2210-2221. doi: 10.1021/acssynbio.1c00094. Epub 2021 Sep 1.
10
Gene ssfg_01967 (miaB) for tRNA modification influences morphogenesis and moenomycin biosynthesis in Streptomyces ghanaensis ATCC14672.
Microbiology (Reading). 2019 Feb;165(2):233-245. doi: 10.1099/mic.0.000747. Epub 2018 Dec 13.

引用本文的文献

1
Structural diversity, bioactivity, and biosynthesis of phosphoglycolipid family antibiotics: Recent advances.
BBA Adv. 2022 Nov 17;2:100065. doi: 10.1016/j.bbadva.2022.100065. eCollection 2022.
2
Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504.
Appl Microbiol Biotechnol. 2022 Feb;106(4):1543-1556. doi: 10.1007/s00253-022-11814-4. Epub 2022 Feb 11.
3
Genetic Engineering of ATCC14672 for Improved Production of Moenomycins.
Microorganisms. 2021 Dec 24;10(1):30. doi: 10.3390/microorganisms10010030.
4
Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study.
Pharmaceutics. 2021 Aug 16;13(8):1265. doi: 10.3390/pharmaceutics13081265.
5
Genome Engineering Approaches to Improve Nosokomycin A Production by B38.3.
Indian J Microbiol. 2019 Mar;59(1):109-111. doi: 10.1007/s12088-018-0761-x. Epub 2018 Sep 25.
6
Complete elucidation of the late steps of bafilomycin biosynthesis in .
J Biol Chem. 2017 Apr 28;292(17):7095-7104. doi: 10.1074/jbc.M116.751255. Epub 2017 Mar 14.
8
Prospects for novel inhibitors of peptidoglycan transglycosylases.
Bioorg Chem. 2014 Aug;55(100):16-26. doi: 10.1016/j.bioorg.2014.05.007. Epub 2014 May 21.

本文引用的文献

2
Insights into the mechanism of the antibiotic-synthesizing enzyme MoeO5 from crystal structures of different complexes.
Angew Chem Int Ed Engl. 2012 Apr 23;51(17):4157-60. doi: 10.1002/anie.201108002. Epub 2012 Mar 16.
3
The ATP-grasp enzymes.
Bioorg Chem. 2011 Dec;39(5-6):185-91. doi: 10.1016/j.bioorg.2011.08.004. Epub 2011 Aug 23.
4
Two distinct mechanisms for TIM barrel prenyltransferases in bacteria.
J Am Chem Soc. 2011 Feb 9;133(5):1270-3. doi: 10.1021/ja109578b. Epub 2011 Jan 7.
6
Evidence for the horizontal transfer of an unusual capsular polysaccharide biosynthesis locus in marine bacteria.
Infect Immun. 2010 Dec;78(12):5214-22. doi: 10.1128/IAI.00653-10. Epub 2010 Oct 4.
7
Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity.
Nat Prod Rep. 2010 Nov;27(11):1594-617. doi: 10.1039/c001461n. Epub 2010 Aug 23.
9
Molecular and genetic analyses of the putative Proteus O antigen gene locus.
Appl Environ Microbiol. 2010 Aug;76(16):5471-8. doi: 10.1128/AEM.02946-09. Epub 2010 Jun 25.
10
Biochemical and genetic insights into asukamycin biosynthesis.
J Biol Chem. 2010 Aug 6;285(32):24915-24. doi: 10.1074/jbc.M110.128850. Epub 2010 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验