Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine; Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA.
Mol Microbiol. 2013 Dec;90(6):1324-38. doi: 10.1111/mmi.12437. Epub 2013 Nov 21.
The biosynthesis of the phosphoglycolipid antibiotic moenomycin A attracts the attention of researchers hoping to develop new moenomycin-based antibiotics against multidrug resistant Gram-positive infections. There is detailed understanding of most steps of this biosynthetic pathway in Streptomyces ghanaensis (ATCC14672), except for the ultimate stage, where a single pentasaccharide intermediate is converted into a set of unusually modified final products. Here we report that only one gene, moeH5, encoding a homologue of the glutamine amidotransferase (GAT) enzyme superfamily, is responsible for the observed diversity of terminally decorated moenomycins. Genetic and biochemical evidence support the idea that MoeH5 is a novel member of the GAT superfamily, whose homologues are involved in the synthesis of various secondary metabolites as well as K and O antigens of bacterial lipopolysaccharide. Our results provide insights into the mechanism of MoeH5 and its counterparts, and give us a new tool for the diversification of phosphoglycolipid antibiotics.
磷酸甘油糖脂抗生素莫能菌素 A 的生物合成引起了研究人员的关注,他们希望开发新的基于莫能菌素的抗生素来对抗耐多药革兰氏阳性感染。在链霉菌加纳亚种(ATCC14672)中,除了最终阶段外,人们对这个生物合成途径的大多数步骤都有详细的了解,在最终阶段,一个五糖中间体被转化为一组异常修饰的最终产物。在这里,我们报告说,只有一个基因 moeH5,编码一个类似于谷氨酰胺酰胺转移酶(GAT)酶超家族的同源物,负责观察到的莫能菌素末端装饰的多样性。遗传和生化证据支持这样一种观点,即 MoeH5 是 GAT 超家族的一个新成员,其同源物参与各种次级代谢产物以及细菌脂多糖 K 和 O 抗原的合成。我们的结果提供了对 MoeH5 及其对应物的机制的深入了解,并为磷酸甘油糖脂抗生素的多样化提供了新的工具。