Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
PLoS One. 2012;7(4):e32591. doi: 10.1371/journal.pone.0032591. Epub 2012 Apr 10.
The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P(2)) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P(2) were determined to be K(d)∼12 µM and 0.4 µM, respectively, and K(d)∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P(2). The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P(2) and an increased apparent affinity to PI(3,4,5)P(3), due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P(2) and no synergy in its binding with PS and PI(4,5)P(2). Neutron reflection measurements show that the PTEN phosphatase "scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN.
PTEN 磷酸酶的结构和功能是通过研究其在平面流体上的膜亲和力和定位来研究的,该平面流体是由热无序合成的膜模型组成。蛋白质与膜的结合强烈依赖于膜的组成,其中磷脂酰丝氨酸(PS)和磷脂酰肌醇二磷酸(PI(4,5)P(2))协同作用明显将酶拉到膜表面。野生型(wt)PTEN 与 PS 和 PI(4,5)P(2)的结合平衡解离常数分别为 K(d)∼12 µM 和 0.4 µM,如果同时存在两种脂质,则 K(d)∼50 nM。膜亲和力取决于膜的流动性,这表明蛋白质上有多个结合 PI(4,5)P(2)的位点。PTEN 突变体 C124S 和 H93R 的结合亲和力与 wt 蛋白的测量值偏差很大。这两种突变体与 PS 的结合强度都强于 wt PTEN。虽然 C124S PTEN 对 PI(4,5)P(2)的亲和力至少与 wt PTEN 相同,并且对 PI(3,4,5)P(3)的表观亲和力增加,但由于其缺乏催化活性,H93R PTEN 对 PI(4,5)P(2)的亲和力降低,与 PS 和 PI(4,5)P(2)的结合没有协同作用。中子反射测量表明,PTEN 磷酸酶“在膜表面上滑行”(穿透深度<5 Å),但由于其两个主要结构域,C2 结构域和磷酸酶结构域,紧密结合在膜上,这与晶体结构一致。调节 C 端尾部很可能从膜上移位,并组织在蛋白质的远侧,距离双层表面约 60 Å,形成一个相当紧凑的结构。结合研究和中子反射的组合使我们能够区分 PTEN 突变蛋白,并最终可能确定膜结合和 PTEN 激活所需的结构特征。