Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, P.O. Box 85500 3508 GA Utrecht, The Netherlands.
Neuroimage. 2012 Jul 2;61(3):606-12. doi: 10.1016/j.neuroimage.2012.03.079. Epub 2012 Apr 4.
The purpose of this study is to create a model that can classify schizophrenia patients and healthy controls based on whole brain gray matter densities (voxel-based morphometry, VBM) from structural magnetic resonance imaging (MRI) scans. In addition, we investigated the stability of the accuracy of the models, when built with different sample sizes. Using a support vector machine, we built a model from 239 subjects (128 patients and 111 healthy controls) and classified 71.4% correct (leave-one-out). We replicated and validated this result by testing the unaltered model on a completely independent sample of 277 subjects (155 patients and 122 healthy controls), scanned with a different scanner. The classification rate of the validation sample was 70.4%. The model's discriminative pattern showed, amongst other differences, gray matter density decreases in frontal and superior temporal lobes and hippocampus in schizophrenia patients with respect to healthy controls and increases in gray matter density in basal ganglia and left occipital lobe and. Larger training samples gave more reliable models: Models based on sample sizes smaller than N=130 should be considered unstable and can even score below chance.
本研究旨在建立一个基于结构磁共振成像(MRI)扫描全脑灰质密度(基于体素的形态测量学,VBM)的模型,以对精神分裂症患者和健康对照者进行分类。此外,我们还研究了在使用不同样本量构建模型时,模型准确性的稳定性。我们使用支持向量机从 239 名受试者(128 名患者和 111 名健康对照者)中构建了一个模型,并进行了 71.4%的正确分类(留一法)。我们通过在一个完全独立的 277 名受试者样本(155 名患者和 122 名健康对照者)上测试未经修改的模型,复制并验证了这一结果,该样本是使用不同的扫描仪扫描的。验证样本的分类率为 70.4%。该模型的判别模式显示,与健康对照组相比,精神分裂症患者的额叶和颞叶上部以及海马体的灰质密度降低,而基底节和左枕叶的灰质密度增加。更大的训练样本给出了更可靠的模型:基于样本量小于 N=130 的模型应被视为不稳定,甚至可能低于随机水平。