Huth Fabian, Tozzi Leonardo, Marxen Michael, Riedel Philipp, Bröckel Kyra, Martini Julia, Berndt Christina, Sauer Cathrin, Vogelbacher Christoph, Jansen Andreas, Kircher Tilo, Falkenberg Irina, Thomas-Odenthal Florian, Lambert Martin, Kraft Vivien, Leicht Gregor, Mulert Christoph, Fallgatter Andreas J, Ethofer Thomas, Rau Anne, Leopold Karolina, Bechdolf Andreas, Reif Andreas, Matura Silke, Biere Silvia, Bermpohl Felix, Fiebig Jana, Stamm Thomas, Correll Christoph U, Juckel Georg, Flasbeck Vera, Ritter Philipp, Bauer Michael, Pfennig Andrea, Mikolas Pavol
Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01062 Dresden, Germany.
Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
Brain Sci. 2023 May 27;13(6):870. doi: 10.3390/brainsci13060870.
The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI ( = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPI. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% 59.2-74.6) for 10-fold cross-validation and 61.9% (95% 52.0-71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value.
双相情感障碍(BD)的病理生理学仍大多不明。然而,一种有效的生物标志物对于改善这种严重疾病的早期检测是必要的。患有明显双相情感障碍的患者海马亚区和杏仁核体积减小。在这项预先注册的分析中,我们使用结构磁共振成像( = 271,7个地点)来比较根据BPSS-P、BARS和EPI估计分为双相情感障碍风险组的求助者之间海马、杏仁核及其亚区/核的体积。我们对所有三种风险评估工具使用线性混合效应模型进行组间比较。此外,我们旨在使用线性支持向量机区分风险组。在主要分析中,我们发现所有边缘结构的风险组之间没有显著的体积差异。然而,支持向量机仍可以根据BPSS-P标准对有风险的受试者进行分类,10折交叉验证的平衡准确率为66.90%(95% 59.2 - 74.6),留一地点法的平衡准确率为61.9%(95% 52.0 - 71.9)。有风险的年轻人中海马和杏仁核的结构改变可能不那么明显;尽管如此,机器学习可以预测双相情感障碍的估计风险高于随机水平。这表明神经变化可能不仅仅是双相情感障碍的结果,可能具有预后临床价值。