文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

端粒通过染色体特异性而非普遍的复制程序进行复制。

Human telomeres replicate using chromosome-specific, rather than universal, replication programs.

机构信息

Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

J Cell Biol. 2012 Apr 16;197(2):253-66. doi: 10.1083/jcb.201112083.


DOI:10.1083/jcb.201112083
PMID:22508510
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3328383/
Abstract

Telomeric and adjacent subtelomeric heterochromatin pose significant challenges to the DNA replication machinery. Little is known about how replication progresses through these regions in human cells. Using single molecule analysis of replicated DNA (SMARD), we delineate the replication programs-i.e., origin distribution, termination site location, and fork rate and direction-of specific telomeres/subtelomeres of individual human chromosomes in two embryonic stem (ES) cell lines and two primary somatic cell types. We observe that replication can initiate within human telomere repeats but was most frequently accomplished by replisomes originating in the subtelomere. No major delay or pausing in fork progression was detected that might lead to telomere/subtelomere fragility. In addition, telomeres from different chromosomes from the same cell type displayed chromosome-specific replication programs rather than a universal program. Importantly, although there was some variation in the replication program of the same telomere in different cell types, the basic features of the program of a specific chromosome end appear to be conserved.

摘要

端粒和相邻的亚端粒异染色质对 DNA 复制机制构成了重大挑战。目前人们对复制过程如何在人类细胞中通过这些区域还知之甚少。使用复制 DNA 的单分子分析 (SMARD),我们描绘了特定人类染色体端粒/亚端粒的复制程序,即起点分布、终止位点位置以及叉速率和方向,在两个胚胎干细胞 (ES) 细胞系和两种主要的体细胞核型中。我们观察到,复制可以在人类端粒重复序列内启动,但最常通过起源于亚端粒的复制体来完成。没有检测到可能导致端粒/亚端粒脆弱性的叉子进展中的主要延迟或暂停。此外,来自同一细胞类型的不同染色体的端粒显示出染色体特异性的复制程序,而不是通用程序。重要的是,尽管在不同细胞类型中端粒的复制程序存在一些差异,但特定染色体末端的程序的基本特征似乎是保守的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/5d1b2c3571c1/JCB_201112083R_Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/cca6de0afbc6/JCB_201112083_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/f9f0e89b626b/JCB_201112083_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/536ac9973530/JCB_201112083_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/3a4d0edf4860/JCB_201112083_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/d40dcd275cc0/JCB_201112083_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/4cd5ece8d1ee/JCB_201112083_Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/5d1b2c3571c1/JCB_201112083R_Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/cca6de0afbc6/JCB_201112083_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/f9f0e89b626b/JCB_201112083_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/536ac9973530/JCB_201112083_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/3a4d0edf4860/JCB_201112083_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/d40dcd275cc0/JCB_201112083_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/4cd5ece8d1ee/JCB_201112083_Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9240/3328383/5d1b2c3571c1/JCB_201112083R_Fig7.jpg

相似文献

[1]
Human telomeres replicate using chromosome-specific, rather than universal, replication programs.

J Cell Biol. 2012-4-16

[2]
Genome-wide Control of Heterochromatin Replication by the Telomere Capping Protein TRF2.

Mol Cell. 2018-5-3

[3]
Replication Timing of Human Telomeres is Conserved during Immortalization and Influenced by Respective Subtelomeres.

Sci Rep. 2016-9-2

[4]
Replicating through telomeres: a means to an end.

Trends Biochem Sci. 2015-7-15

[5]
Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions.

Mol Cell Biol. 2004-5

[6]
Single-molecule analysis of subtelomeres and telomeres in Alternative Lengthening of Telomeres (ALT) cells.

BMC Genomics. 2020-7-15

[7]
Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization.

PLoS Genet. 2010-4-22

[8]
Fission yeast Stn1 is crucial for semi-conservative replication at telomeres and subtelomeres.

Nucleic Acids Res. 2017-2-17

[9]
Resolving Roadblocks to Telomere Replication.

Methods Mol Biol. 2019

[10]
Checkpoint effects and telomere amplification during DNA re-replication in fission yeast.

BMC Mol Biol. 2007-12-21

引用本文的文献

[1]
TRF1 relies on fork reversal to prevent fragility at human telomeres.

Nat Commun. 2025-7-11

[2]
Telomere function and regulation from mouse models to human ageing and disease.

Nat Rev Mol Cell Biol. 2025-4

[3]
Human SKI component SKIV2L regulates telomeric DNA-RNA hybrids and prevents telomere fragility.

iScience. 2024-10-4

[4]
Telomere maintenance and the DNA damage response: a paradoxical alliance.

Front Cell Dev Biol. 2024-10-17

[5]
Elucidation of the molecular mechanism of the breakage-fusion-bridge (BFB) cycle using a CRISPR-dCas9 cellular model.

Nucleic Acids Res. 2024-10-28

[6]
BLM helicase unwinds lagging strand substrates to assemble the ALT telomere damage response.

Mol Cell. 2024-5-2

[7]
Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication.

Biomolecules. 2024-2-22

[8]
A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells.

Elife. 2023-8-30

[9]
The exoribonuclease XRN2 mediates degradation of the long non-coding telomeric RNA TERRA.

FEBS Lett. 2023-7

[10]
Highlighting vulnerabilities in the alternative lengthening of telomeres pathway.

Curr Opin Pharmacol. 2023-6

本文引用的文献

[1]
Overcoming natural replication barriers: differential helicase requirements.

Nucleic Acids Res. 2011-10-7

[2]
Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication.

EMBO J. 2011-8-9

[3]
Genome-wide depletion of replication initiation events in highly transcribed regions.

Genome Res. 2011-8-3

[4]
DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase.

Cell. 2011-5-27

[5]
Preferential localization of human origins of DNA replication at the 5'-ends of expressed genes and at evolutionarily conserved DNA sequences.

PLoS One. 2011-5-13

[6]
CO-FISH, COD-FISH, ReD-FISH, SKY-FISH.

Methods Mol Biol. 2011

[7]
Defining the replication program through the chromatin landscape.

Crit Rev Biochem Mol Biol. 2011-4

[8]
Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae.

Nat Struct Mol Biol. 2011-3-13

[9]
TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA.

Nature. 2011-3-13

[10]
Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription.

Genome Res. 2010-12-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索