Suppr超能文献

利用 CRISPR-dCas9 细胞模型阐明断裂-融合-桥接(BFB)循环的分子机制。

Elucidation of the molecular mechanism of the breakage-fusion-bridge (BFB) cycle using a CRISPR-dCas9 cellular model.

机构信息

Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA.

School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA.

出版信息

Nucleic Acids Res. 2024 Oct 28;52(19):11689-11703. doi: 10.1093/nar/gkae747.

Abstract

Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanism for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrate that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we show that targeting dCas9 to telomeres using sgTelo impedes DNA replication at telomeres and induces a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigate the genome-wide features of telomeres in the dCas9/sgTelo cells and observe a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-. Consistently, we also observe an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncover many interesting molecular and structural features of the ITCB and demonstrate that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.

摘要

染色体不稳定性 (CIN) 在许多肿瘤中经常观察到。断裂-融合-桥 (BFB) 循环已被提出是肿瘤发生和肿瘤进化过程中 CIN 的主要驱动因素之一。然而,BFB 循环各个步骤的详细机制仍需要进一步研究。在这里,我们证明了一种与端粒特异性单引导 RNA(sgTelo)偶联的无核酸酶 Cas9(dCas9)可用于模拟 BFB 循环。首先,我们表明使用 sgTelo 将 dCas9 靶向到端粒会阻碍端粒处的 DNA 复制,并诱导明显增加的复制应激和 DNA 损伤。使用通过光学作图的单分子端粒分析 (SMTA-OM),我们研究了 dCas9/sgTelo 细胞中端粒的全基因组特征,并观察到染色体末端融合的急剧增加,包括融合/ITS+和融合/ITS-。一致地,我们还观察到双着丝粒染色体、后期桥和细胞间端粒染色体桥(ITCB)的形成增加。利用 dCas9/sgTelo 系统,我们揭示了 ITCB 的许多有趣的分子和结构特征,并表明多种 DNA 修复途径参与了 ITCB 的形成。我们的研究为 BFB 循环的分子机制提供了新的见解,这将有助于我们理解肿瘤发生、肿瘤进化和耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/652a/11514482/63de0b14c5d3/gkae747figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验