Suppr超能文献

基于多结构域协作的蛋白质相互作用预测计算模型。

A computational model for predicting protein interactions based on multidomain collaboration.

机构信息

Department of Information and Communications Engineering, Korea Advanced Institute of Science and Technology, Kaist, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Korea.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2012 Jul-Aug;9(4):1081-90. doi: 10.1109/TCBB.2012.55.

Abstract

Recently, several domain-based computational models for predicting protein-protein interactions (PPIs) have been proposed. The conventional methods usually infer domain or domain combination (DC) interactions from already known interacting sets of proteins, and then predict PPIs using the information. However, the majority of these models often have limitations in providing detailed information on which domain pair (single domain interaction) or DC pair (multidomain interaction) will actually interact for the predicted protein interaction. Therefore, a more comprehensive and concrete computational model for the prediction of PPIs is needed. We developed a computational model to predict PPIs using the information of intraprotein domain cohesion and interprotein DC coupling interaction. A method of identifying the primary interacting DC pair was also incorporated into the model in order to infer actual participants in a predicted interaction. Our method made an apparent improvement in the PPI prediction accuracy, and the primary interacting DC pair identification was valid specifically in predicting multidomain protein interactions. In this paper, we demonstrate that 1) the intraprotein domain cohesion is meaningful in improving the accuracy of domain-based PPI prediction, 2) a prediction model incorporating the intradomain cohesion enables us to identify the primary interacting DC pair, and 3) a hybrid approach using the intra/interdomain interaction information can lead to a more accurate prediction.

摘要

最近,已经提出了几种基于域的计算模型来预测蛋白质-蛋白质相互作用(PPIs)。传统方法通常从已经知道的相互作用蛋白质集中推断域或域组合(DC)相互作用,然后使用这些信息来预测 PPIs。然而,这些模型中的大多数通常在提供有关哪些域对(单域相互作用)或 DC 对(多域相互作用)实际上会相互作用的详细信息方面存在局限性。因此,需要一种更全面和具体的计算模型来预测 PPIs。我们开发了一种使用蛋白质内域内聚和蛋白质间 DC 偶联相互作用信息来预测 PPIs 的计算模型。为了推断预测相互作用中的实际参与者,该模型还纳入了一种识别主要相互作用 DC 对的方法。我们的方法明显提高了 PPI 预测的准确性,并且主要相互作用的 DC 对识别在预测多域蛋白质相互作用方面是有效的。在本文中,我们证明了 1)蛋白质内域内聚在提高基于域的 PPI 预测准确性方面是有意义的,2)纳入内域内聚的预测模型使我们能够识别主要相互作用的 DC 对,3)使用内/域间相互作用信息的混合方法可以导致更准确的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验