Theys Margaux, De Waele Jolien, Garud Sharang, Willegems Katrien, Van Petegem Filip, Bosmans Frank
Molecular Physiology and Neurophysics group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, University of Ghent, Ghent 9000, Belgium.
Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada.
Sci Adv. 2025 May 30;11(22):eadt9799. doi: 10.1126/sciadv.adt9799. Epub 2025 May 28.
Na1.9 is a voltage-gated Na channel subtype with unique gating properties that are poorly understood, partly due to the lack of reliable heterologous expression systems. Here, we present a transient expression protocol that produces robust mouse Na1.9 currents, enabling direct electrophysiological comparisons with native dorsal root ganglion neurons. To further understand the low current density observed in human Na1.9, we created chimeras with Na1.5 and identified a role for the C-tail-specifically the IQ motif and EF-hand-in regulating current densities, likely due to a weak affinity for calmodulin. Isothermal titration calorimetry experiments indicated that, unlike other Na channel subtypes, calmodulin binding to the C-tail is likely too weak to occur under physiological conditions. Markedly, the pre-IQ region did not influence channel expression but was responsible for conferring the characteristic depolarized voltage dependency of inactivation of Na1.9. Our findings provide insights into the unique gating mechanisms of Na1.9 and demonstrate the robustness of this platform for structure-function studies.
Na1.9是一种电压门控钠通道亚型,具有独特的门控特性,但人们对此了解甚少,部分原因是缺乏可靠的异源表达系统。在这里,我们提出了一种瞬时表达方案,该方案可产生强大的小鼠Na1.9电流,从而能够与天然背根神经节神经元进行直接电生理比较。为了进一步了解在人类Na1.9中观察到的低电流密度,我们构建了与Na1.5的嵌合体,并确定了C末端(特别是IQ基序和EF手)在调节电流密度中的作用,这可能是由于对钙调蛋白的亲和力较弱。等温滴定量热实验表明,与其他钠通道亚型不同,钙调蛋白与C末端的结合可能太弱,在生理条件下无法发生。值得注意的是,IQ前区不影响通道表达,但负责赋予Na1.9失活的特征性去极化电压依赖性。我们的研究结果为Na1.9独特的门控机制提供了见解,并证明了该平台在结构功能研究中的稳健性。