Kumar Ashok, Singh Nagendra, Yadav Rahul, Kumar Ramasamy P, Sharma Sujata, Arora Ashish, Singh T P
Int J Biochem Mol Biol. 2012;3(1):58-69. Epub 2012 Feb 15.
Peptidyl-tRNA hydrolase from Mycobacterium smegmatis is a single domain 21 kDa protein involved in the hydrolysis of prematurely produced peptidyl-tRNAs to ensure the viability of cells in bacteria, thus making it a potentially important drug target. In order to aid the development of potent drugs for controlling bacterial infections, the three-dimensional structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis has been determined. The protein adopts a compact α/β globular fold with a twisted β-sheet surrounded by α-helices. The functionally important C-terminal stretch has been unambiguously modeled for the first time in the unliganded structure of peptidyl-tRNA hydrolase. The segment, Gly138 - Val150 is mobile because it lacks significant interactions with the rest of the protein molecule. This conformational flexibility is reflected through different values of distances between a reference atom Ala147 C(α) of the segment Gly138 - Val150 to Gly114 C(α) from another segment from opposite side of the substrate binding channel in Mycobacterium smegmatis (7.8 Ǻ), Mycobacterium tuberculosis (9.5 Ǻ) and Escherichia coli (11.8 Ǻ). Similarly, the conformation of loop Gly109 - Gly117 with respect to another loop Asp95 - Asp100 also shows variability of the substrate binding cleft as the distance between Asp98 O(δ2) to Gly113 C(α) in Mycobacterium smegmatis is 4.5 Ǻ while the corresponding distances in Mycobacterium tuberculosis and Escherichia coli are 3.1 Ǻ and 6.7 Ǻ respectively. The hydrogen bonded interactions between Asn116, His22 and Asp95 indicate a stereochemically favorable arrangement of these residues for catalytic action.
耻垢分枝杆菌的肽基 - tRNA水解酶是一种单结构域的21 kDa蛋白质,参与过早产生的肽基 - tRNA的水解,以确保细菌细胞的活力,因此使其成为一个潜在的重要药物靶点。为了帮助开发用于控制细菌感染的有效药物,已确定了耻垢分枝杆菌肽基 - tRNA水解酶的三维结构。该蛋白质采用紧凑的α/β球状折叠,有一个被α螺旋包围的扭曲β折叠片层。在肽基 - tRNA水解酶的未结合配体结构中,首次明确模拟了功能重要的C末端片段。Gly138 - Val150片段是可移动的,因为它与蛋白质分子的其余部分缺乏显著相互作用。这种构象灵活性通过耻垢分枝杆菌中该片段(Gly138 - Val150)的参考原子Ala147 C(α)与底物结合通道另一侧另一片段的Gly114 C(α)之间距离的不同值体现出来(耻垢分枝杆菌中为7.8 Å,结核分枝杆菌中为9.5 Å,大肠杆菌中为11.8 Å)。同样,环Gly109 - Gly117相对于另一个环Asp95 - Asp100的构象也显示出底物结合裂隙的可变性,因为耻垢分枝杆菌中Asp98 O(δ2)与Gly113 C(α)之间的距离为4.5 Å,而结核分枝杆菌和大肠杆菌中的相应距离分别为3.1 Å和6.7 Å。Asn116、His22和Asp95之间的氢键相互作用表明这些残基在立体化学上有利于催化作用的排列。