Suppr超能文献

大肠杆菌肽基 - tRNA水解酶的1.2埃分辨率晶体结构及活性位点图谱

Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase.

作者信息

Schmitt E, Mechulam Y, Fromant M, Plateau P, Blanquet S

机构信息

Laboratoire de Biochimie, Unit'e de Recherche Associ'ee No. 1970 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France.

出版信息

EMBO J. 1997 Aug 1;16(15):4760-9. doi: 10.1093/emboj/16.15.4760.

Abstract

Peptidyl-tRNA hydrolase activity from Escherichia coli ensures the recycling of peptidyl-tRNAs produced through abortion of translation. This activity, which is essential for cell viability, is carried out by a monomeric protein of 193 residues. The structure of crystalline peptidyl-tRNA hydrolase could be solved at 1.2 A resolution. It indicates a single alpha/beta globular domain built around a twisted mixed beta-sheet, similar to the central core of an aminopeptidase from Aeromonas proteolytica. This similarity allowed the characterization by site-directed mutagenesis of several residues of the active site of peptidyl-tRNA hydrolase. These residues, strictly conserved among the known peptidyl-tRNA hydrolase sequences, delineate a channel which, in the crystal, is occupied by the C-end of a neighbouring peptidyl-tRNA hydrolase molecule. Hence, several main chain atoms of three residues belonging to one peptidyl-tRNA hydrolase polypeptide establish contacts inside the active site of another peptidyl-tRNA hydrolase molecule. Such an interaction is assumed to represent the formation of a complex between the enzyme and one product of the catalysed reaction.

摘要

来自大肠杆菌的肽基 - tRNA水解酶活性可确保通过翻译终止产生的肽基 - tRNA得以循环利用。这种对细胞活力至关重要的活性由一种含193个残基的单体蛋白执行。结晶态的肽基 - tRNA水解酶结构能够以1.2埃的分辨率解析出来。它显示出一个围绕扭曲的混合β - 折叠构建的单一α/β球状结构域,类似于解蛋白气单胞菌一种氨肽酶的中心核心。这种相似性使得通过定点诱变对肽基 - tRNA水解酶活性位点的几个残基进行了表征。这些在已知的肽基 - tRNA水解酶序列中严格保守的残基勾勒出一个通道,在晶体中,该通道被相邻肽基 - tRNA水解酶分子的C末端占据。因此,属于一个肽基 - tRNA水解酶多肽的三个残基的几个主链原子在另一个肽基 - tRNA水解酶分子的活性位点内形成接触。这种相互作用被认为代表了酶与催化反应的一种产物之间复合物的形成。

相似文献

3
Structural plasticity and enzyme action: crystal structures of mycobacterium tuberculosis peptidyl-tRNA hydrolase.
J Mol Biol. 2007 Sep 7;372(1):186-93. doi: 10.1016/j.jmb.2007.06.053. Epub 2007 Jun 27.
4
NMR-based substrate analog docking to Escherichia coli peptidyl-tRNA hydrolase.
J Mol Biol. 2011 Sep 30;412(4):619-33. doi: 10.1016/j.jmb.2011.06.025. Epub 2011 Jun 21.
5
Solution structure and dynamics of peptidyl-tRNA hydrolase from Mycobacterium tuberculosis H37Rv.
J Mol Biol. 2008 Apr 18;378(1):165-77. doi: 10.1016/j.jmb.2008.02.027. Epub 2008 Feb 21.
6
Expression, purification, and characterization of peptidyl-tRNA hydrolase from Staphylococcus aureus.
Protein Expr Purif. 2002 Feb;24(1):123-30. doi: 10.1006/prep.2001.1540.
8
Structure of peptidyl-tRNA hydrolase 2 from Pyrococcus horikoshii OT3: insight into the functional role of its dimeric state.
Acta Crystallogr D Biol Crystallogr. 2008 Apr;64(Pt 4):444-53. doi: 10.1107/S0907444908002850. Epub 2008 Mar 19.
9
Structural and functional characterization of peptidyl-tRNA hydrolase from Klebsiella pneumoniae.
Biochim Biophys Acta Proteins Proteom. 2021 Jan;1869(1):140554. doi: 10.1016/j.bbapap.2020.140554. Epub 2020 Oct 15.

引用本文的文献

1
Screening and Molecular Dynamics Simulations of Small Molecules Targeting Peptidyl tRNA Hydrolase for Drug-Resistant Tuberculosis.
ACS Omega. 2025 Aug 14;10(33):37115-37127. doi: 10.1021/acsomega.5c01747. eCollection 2025 Aug 26.
2
Binding mode between peptidyl-tRNA hydrolase and the peptidyl-A76 moiety of the substrate.
J Biol Chem. 2025 Apr;301(4):108385. doi: 10.1016/j.jbc.2025.108385. Epub 2025 Mar 4.
3
Trypanosoma cruzi has Two Peptidyl-tRNA Hydrolases Showing Different Localization and Function.
Acta Parasitol. 2025 Feb 13;70(1):60. doi: 10.1007/s11686-025-00989-1.
4
Rationally designed pooled CRISPRi-seq uncovers an inhibitor of bacterial peptidyl-tRNA hydrolase.
Cell Rep. 2024 Nov 26;43(11):114967. doi: 10.1016/j.celrep.2024.114967. Epub 2024 Nov 15.
6
Release of Ubiquitinated and Non-ubiquitinated Nascent Chains from Stalled Mammalian Ribosomal Complexes by ANKZF1 and Ptrh1.
Mol Cell. 2018 Oct 18;72(2):286-302.e8. doi: 10.1016/j.molcel.2018.08.022. Epub 2018 Sep 20.
7
Unraveling the stereochemical and dynamic aspects of the catalytic site of bacterial peptidyl-tRNA hydrolase.
RNA. 2017 Feb;23(2):202-216. doi: 10.1261/rna.057620.116. Epub 2016 Nov 10.
10
Initiation of mRNA translation in bacteria: structural and dynamic aspects.
Cell Mol Life Sci. 2015 Nov;72(22):4341-67. doi: 10.1007/s00018-015-2010-3. Epub 2015 Aug 11.

本文引用的文献

1
Crystallization and preliminary X-ray analysis of Escherichia coli peptidyl-tRNA hydrolase.
Proteins. 1997 May;28(1):135-6. doi: 10.1002/(sici)1097-0134(199705)28:1<135::aid-prot14>3.0.co;2-k.
4
Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase.
J Mol Biol. 1993 Jun 20;231(4):1068-77. doi: 10.1006/jmbi.1993.1352.
5
Lincosamide antibiotics stimulate dissociation of peptidyl-tRNA from ribosomes.
Antimicrob Agents Chemother. 1993 Sep;37(9):2027-9. doi: 10.1128/AAC.37.9.2027.
6
MC-Fit: using Monte-Carlo methods to get accurate confidence limits on enzyme parameters.
Comput Appl Biosci. 1994 Jun;10(3):273-5. doi: 10.1093/bioinformatics/10.3.273.
7
Comparison of the enzymatic properties of the two Escherichia coli lysyl-tRNA synthetase species.
J Biol Chem. 1995 Jun 16;270(24):14439-44. doi: 10.1074/jbc.270.24.14439.
8
Role of the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase.
Nucleic Acids Res. 1993 Aug 25;21(17):4025-30. doi: 10.1093/nar/21.17.4025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验