Suppr超能文献

混沌运动探索与运动行为学习。

Chaotic exploration and learning of locomotion behaviors.

机构信息

Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QG, U.K.

出版信息

Neural Comput. 2012 Aug;24(8):2185-222. doi: 10.1162/NECO_a_00313. Epub 2012 Apr 17.

Abstract

We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage.

摘要

我们提出了一个通用的、完全动态的神经网络系统,利用内在的混沌动力学,实时地引导具有任意形态的关节机器人在未知环境中探索和学习可能的运动模式。该控制器被建模为一个神经网络振荡器的网络,这些振荡器最初仅通过物理体现进行耦合,通过自适应分叉进行混沌搜索,从而实现协调运动模式的目标导向探索。间接耦合的神经-身体-环境系统的相空间包含多个瞬态或永久的自组织动力学,其中每个动力学都是一种运动行为的候选者。自适应分叉使系统轨道能够利用其内在的混沌动力学作为驱动力,在与给定目标标准匹配的状态之一上稳定下来。为了提高有用瞬态模式的可持续性,引入了感官稳态,这导致运动输出的多样性增加,从而实现多尺度探索。通过这个过程发现的节奏模式通过使用自适应同步方法改变初始不连接振荡器之间的布线来被记忆和维持。我们的结果表明,新型神经机器人系统能够为广泛的身体构型和物理环境创建和学习多种运动行为,并在遭受损伤后实时重新适应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验