Suppr超能文献

组织变形在空间上调节 VEGF 信号转导和血管生成。

Tissue deformation spatially modulates VEGF signaling and angiogenesis.

机构信息

Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2012 May 1;109(18):6886-91. doi: 10.1073/pnas.1201626109. Epub 2012 Apr 17.

Abstract

Physical forces play a major role in the organization of developing tissues. During vascular development, physical forces originating from a fluid phase or from cells pulling on their environment can alter cellular signaling and the behavior of cells. Here, we observe how tissue deformation spatially modulates angiogenic signals and angiogenesis. Using soft lithographic templates, we assemble three-dimensional, geometric tissues. The tissues contract autonomously, change shape stereotypically and form patterns of vascular structures in regions of high deformations. We show that this emergence correlates with the formation of a long-range gradient of Vascular Endothelial Growth Factor (VEGF) in interstitial cells, the local overexpression of the corresponding receptor VEGF receptor 2 (VEGFR-2) and local differences in endothelial cells proliferation. We suggest that tissue contractility and deformation can induce the formation of gradients of angiogenic microenvironments which could contribute to the long-range patterning of the vascular system.

摘要

物理力在组织发育中起着重要作用。在血管发育过程中,源自流体相或细胞对其环境的拉力的物理力可以改变细胞信号转导和细胞行为。在这里,我们观察了组织变形如何在空间上调节血管生成信号和血管生成。使用软光刻模板,我们组装了三维几何组织。组织自主收缩,以刻板的方式改变形状,并在高变形区域形成血管结构的图案。我们表明,这种出现与细胞间血管内皮生长因子 (VEGF) 的长程梯度的形成相关,局部过表达相应的受体 VEGF 受体 2 (VEGFR-2) 和内皮细胞增殖的局部差异。我们认为,组织收缩性和变形可以诱导血管生成微环境的梯度形成,这可能有助于血管系统的长程模式形成。

相似文献

1
Tissue deformation spatially modulates VEGF signaling and angiogenesis.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6886-91. doi: 10.1073/pnas.1201626109. Epub 2012 Apr 17.
6
The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization.
Differentiation. 2011 Mar;81(3):181-91. doi: 10.1016/j.diff.2010.12.003. Epub 2011 Jan 13.
8
VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells.
J Dent Res. 2013 Jun;92(6):524-31. doi: 10.1177/0022034513485599. Epub 2013 Apr 22.
9
Necl-5/poliovirus receptor interacts with VEGFR2 and regulates VEGF-induced angiogenesis.
Circ Res. 2012 Mar 2;110(5):716-26. doi: 10.1161/CIRCRESAHA.111.256834. Epub 2012 Jan 26.

引用本文的文献

1
Impact of ligand binding on VEGFR1, VEGFR2, and NRP1 localization in human endothelial cells.
PLoS Comput Biol. 2025 Jul 16;21(7):e1013254. doi: 10.1371/journal.pcbi.1013254. eCollection 2025 Jul.
2
vascularization of 3D cell aggregates in microwells with integrated vascular beds.
Mater Today Bio. 2024 Sep 19;29:101260. doi: 10.1016/j.mtbio.2024.101260. eCollection 2024 Dec.
3
Fabrication Method for Shape-Controlled 3D Tissue Using High-Porosity Porous Structure.
Bioengineering (Basel). 2024 Feb 5;11(2):160. doi: 10.3390/bioengineering11020160.
4
Recent advances in organoid engineering: A comprehensive review.
Appl Mater Today. 2022 Dec;29. doi: 10.1016/j.apmt.2022.101582. Epub 2022 Jul 6.
5
Generating human blastoids modeling blastocyst-stage embryos and implantation.
Nat Protoc. 2023 May;18(5):1584-1620. doi: 10.1038/s41596-023-00802-1. Epub 2023 Feb 15.
6
Spatial control of self-organizing vascular networks with programmable aptamer-tethered growth factor photopatterning.
Mater Today Bio. 2023 Jan 20;19:100551. doi: 10.1016/j.mtbio.2023.100551. eCollection 2023 Apr.
7
Mesenchymal Stem Cells Sense the Toughness of Nanomaterials and Interfaces.
Adv Healthc Mater. 2023 May;12(13):e2203297. doi: 10.1002/adhm.202203297. Epub 2023 Feb 21.
8
Mechanical regulation of the early stages of angiogenesis.
J R Soc Interface. 2022 Dec;19(197):20220360. doi: 10.1098/rsif.2022.0360. Epub 2022 Dec 7.
9
The interplay between physical cues and mechanosensitive ion channels in cancer metastasis.
Front Cell Dev Biol. 2022 Sep 7;10:954099. doi: 10.3389/fcell.2022.954099. eCollection 2022.
10
Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells.
Cell Stem Cell. 2022 Sep 1;29(9):1346-1365.e10. doi: 10.1016/j.stem.2022.08.001.

本文引用的文献

1
Molecular control of endothelial cell behaviour during blood vessel morphogenesis.
Nat Rev Mol Cell Biol. 2011 Aug 23;12(9):551-64. doi: 10.1038/nrm3176.
2
Non-redundant functions of the protein isoforms arising from alternative splicing of the VEGF-A pre-mRNA.
Transcription. 2010 Nov;1(3):149-153. doi: 10.4161/trns.1.3.13229. Epub 2010 Aug 3.
4
Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair.
Biochem Biophys Res Commun. 2009 Dec 18;390(3):834-8. doi: 10.1016/j.bbrc.2009.10.058. Epub 2009 Oct 15.
5
Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15279-84. doi: 10.1073/pnas.0905891106. Epub 2009 Aug 24.
6
Spheroid-based human endothelial cell microvessel formation in vivo.
Nat Protoc. 2009;4(8):1202-15. doi: 10.1038/nprot.2009.96. Epub 2009 Jul 30.
7
Tissue assembly and organization: developmental mechanisms in microfabricated tissues.
Biomaterials. 2009 Oct;30(28):4851-8. doi: 10.1016/j.biomaterials.2009.06.037. Epub 2009 Jul 9.
8
Biomechanical regulation of blood vessel growth during tissue vascularization.
Nat Med. 2009 Jun;15(6):657-64. doi: 10.1038/nm.1985.
9
A mechanosensitive transcriptional mechanism that controls angiogenesis.
Nature. 2009 Feb 26;457(7233):1103-8. doi: 10.1038/nature07765.
10
Engineering vascularised tissues in vitro.
Eur Cell Mater. 2008 Feb 21;15:27-40. doi: 10.22203/ecm.v015a03.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验