Suppr超能文献

基于改性疏水羟丙基甲基纤维素的凝胶药物释放曲线的数学建模

Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels.

作者信息

Ghosal K, Chandra A, Rajabalaya R, Chakraborty S, Nanda A

机构信息

Department of Pharmaceutical Technology, Jadavpur University, Durgapur, India.

出版信息

Pharmazie. 2012 Feb;67(2):147-55.

Abstract

Hydroxypropyl methylcellulose (HPMC) is now available in modified hydrophobic forms (Sangelose). In this paper, the effect of viscosity grade and HPMC concentration on in vitro release kinetics of a topically applied drug were studied using gel formulations of a nonsteroidal anti-inflammatory drug (NSAID), diclofenac potassium (DP), with different viscosity grades of the polymer (60L, 60 M, 90 M for hydrophobic HPMC and 50 cPs for conventional hydrophilic HPMC) in different proportions. It was found that hydrophobic HPMC-based gels having a higher viscosity and lower polymer concentration release a notably higher amount of drug compared with hydrophilic HPMC-based gels containing a higher concentration of polymer but with lower viscosity. For gels, the suitability of different common empirical (zero-order, first-order, and Higuchi), and semi-empirical (Ritger-Peppas and Peppas-Sahlin) models, and some new statistical (logistic, log-logistic, Weibull, Gumbel, and generalized extreme value distribution) models to describe the drug release profile were tested through non-linear least-square curve fitting. A general purpose mathematical analysis tool MATLAB was used. Further, instead of the widely used transformed linear fit method, direct fitting was used in the paper to avoid any form of truncation and transformation errors. The results revealed that the log-logistic distribution, amongst all the models investigated, was the best fit for hydrophobic formulations. For hydrophilic ones, the semi-empirical models and Weibull distribution worked best, although log-logistic also showed a close fit. The shape parameter for the log-logistic and Weibull distribution conveys vital information about the rate of release and helps improve understanding of drug release profiles.

摘要

羟丙基甲基纤维素(HPMC)现在有改性疏水形式(Sangelose)。在本文中,使用非甾体抗炎药双氯芬酸钾(DP)的凝胶制剂,研究了粘度等级和HPMC浓度对局部应用药物体外释放动力学的影响,该凝胶制剂含有不同比例的不同粘度等级的聚合物(疏水HPMC的60L、60M、90M以及常规亲水HPMC的50厘泊)。结果发现,与含有较高聚合物浓度但较低粘度的亲水性HPMC基凝胶相比,具有较高粘度和较低聚合物浓度的疏水性HPMC基凝胶释放出的药物量明显更高。对于凝胶,通过非线性最小二乘曲线拟合测试了不同常见经验模型(零级、一级和Higuchi模型)、半经验模型(Ritger-Peppas和Peppas-Sahlin模型)以及一些新的统计模型(逻辑模型、对数逻辑模型、威布尔模型、冈贝尔模型和广义极值分布模型)来描述药物释放曲线。使用了通用数学分析工具MATLAB。此外,本文采用直接拟合而非广泛使用的变换线性拟合方法,以避免任何形式的截断和变换误差。结果表明,在所有研究的模型中,对数逻辑分布最适合疏水性制剂。对于亲水性制剂,半经验模型和威布尔分布效果最佳,尽管对数逻辑分布也显示出紧密拟合。对数逻辑分布和威布尔分布的形状参数传达了有关释放速率的重要信息,并有助于加深对药物释放曲线的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验