Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Spain.
Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar. Galapagar 28260, Spain.
Biomacromolecules. 2024 Aug 12;25(8):5233-5250. doi: 10.1021/acs.biomac.4c00629. Epub 2024 Jul 17.
A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-β-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.
组织工程学中一个很有前景的趋势是利用生物材料来提高药物在靶向组织中的浓度控制。当所需的治疗时间窗口高于体内治疗分子的稳定性时,这些载体系统就具有特殊的意义。本文评估了丝素蛋白水凝胶持续释放不同分子和药物的能力。我们发现,通过完全基于水的工艺获得的生物材料形式可以持续释放具有不同分子量和电荷的分子,并且优先输送带负电荷的分子。尽管理论模型表明药物释放更可能是由菲克扩散驱动的,但外部介质对释放有很大的影响,亲脂性有机溶剂如乙腈-甲醇(ACN-MeOH)会增强疏水分子的释放。其次,我们发现丝素蛋白可用作载体系统来治疗多种脑部疾病,因为这种生物材料能够持续释放具有神经营养(脑源性神经营养因子)(BDNF)、趋化(C-X-C 基序趋化因子 12)(CXCL12)、抗炎(TGF-β-1)和血管生成(VEGF)能力的不同因子。最后,我们证明了这种生物材料水凝胶可以释放具有抗氧化能力的胆甾烯硝酮 ISQ201,在体外缺血再灌注模型中具有神经保护活性。鉴于丝素蛋白在包括神经系统在内的许多生物组织中的降解速度较慢,我们的研究扩大了具有治疗能力的药物输送型生物材料系统的受限清单,不仅适用于短期治疗窗口,尤其适用于长期治疗窗口,并且对脑病理学有价值。