Centre for Medical Image Computing, University College London, Gower Street, London, UK.
Med Image Anal. 2012 Jul;16(5):966-75. doi: 10.1016/j.media.2012.03.001. Epub 2012 Mar 28.
X-ray mammography is routinely used in national screening programmes and as a clinical diagnostic tool. Magnetic Resonance Imaging (MRI) is commonly used as a complementary modality, providing functional information about the breast and a 3D image that can overcome ambiguities caused by the superimposition of fibro-glandular structures associated with X-ray imaging. Relating findings between these modalities is a challenging task however, due to the different imaging processes involved and the large deformation that the breast undergoes. In this work we present a registration method to determine spatial correspondence between pairs of MR and X-ray images of the breast, that is targeted for clinical use. We propose a generic registration framework which incorporates a volume-preserving affine transformation model and validate its performance using routinely acquired clinical data. Experiments on simulated mammograms from 8 volunteers produced a mean registration error of 3.8±1.6mm for a mean of 12 manually identified landmarks per volume. When validated using 57 lesions identified on routine clinical CC and MLO mammograms (n=113 registration tasks) from 49 subjects the median registration error was 13.1mm. When applied to the registration of an MR image to CC and MLO mammograms of a patient with a localisation clip, the mean error was 8.9mm. The results indicate that an intensity based registration algorithm, using a relatively simple transformation model, can provide radiologists with a clinically useful tool for breast cancer diagnosis.
X 射线乳房摄影术常用于国家筛查计划和临床诊断工具。磁共振成像(MRI)通常用作补充模态,提供有关乳房的功能信息和可以克服与 X 射线成像相关的纤维腺体结构叠加引起的歧义的 3D 图像。然而,由于涉及不同的成像过程和乳房经历的大变形,因此这些模态之间的关联是一项具有挑战性的任务。在这项工作中,我们提出了一种注册方法,用于确定乳房的 MR 和 X 射线图像对之间的空间对应关系,该方法针对临床使用。我们提出了一种通用的注册框架,该框架包含体积保持仿射变换模型,并使用常规采集的临床数据验证其性能。对来自 8 名志愿者的模拟乳房 X 光片进行的实验产生了每个体积 3.8±1.6mm 的平均注册误差,对于每个体积 12 个手动识别的标记。当使用 49 名受试者的 57 个常规临床 CC 和 MLO 乳房 X 光片中识别的 113 个注册任务中的病变进行验证时,中位数注册误差为 13.1mm。当应用于带有定位夹的患者的 MR 图像与 CC 和 MLO 乳房 X 光片的注册时,平均误差为 8.9mm。结果表明,基于强度的注册算法,使用相对简单的变换模型,可以为放射科医生提供一种用于乳腺癌诊断的临床有用工具。