MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
Mol Pharm. 2012 Jun 4;9(6):1580-9. doi: 10.1021/mp200590y. Epub 2012 May 8.
Near-infrared (NIR)-to-visible upconversion nanoparticle (UCNP) has shown promising prospects in photodynamic therapy (PDT) as a drug carrier or energy donor. In this work, a photosensitizer pyropheophorbide a (Ppa) and RGD peptide c(RGDyK) comodified chitosan-wrapped NaYF(4):Yb/Er upconversion nanoparticle UCNP-Ppa-RGD was developed for targeted near-infrared photodynamic therapy. The properties of UCNP-Ppa-RGD, such as morphology, stability, optical spectroscopy and singlet oxygen generation efficiency, were investigated. The results show that covalently linked pyropheophorbide a molecule not only is stable but also retains its spectroscopic and functional properties. In vitro studies confirm a stronger targeting specificity of UCNP-Ppa-RGD to integrin α(v)β(3)-positive U87-MG cells compared with that in the corresponding negative group. The photosensitizer-attached nanostructure exhibited low dark toxicity and high phototoxicity against cancer cells upon 980 nm laser irradiation at an appropriate dosage. These results represent the first demonstration of a highly stable and efficient photosensitizer modified upconversion nanostructure for targeted near-infrared photodynamic therapy of cancer cells. The novel UCNP-Ppa-RGD nanoparticle may provide a powerful alternative for near-infrared photodynamic therapy with an improved tumor targeting specificity.
近红外(NIR)-可见光上转换纳米粒子(UCNP)作为药物载体或能量供体,在光动力疗法(PDT)中显示出了广阔的应用前景。在这项工作中,制备了一种光敏剂原卟啉 IX(Ppa)和 RGD 肽 c(RGDyK)共修饰的壳聚糖包裹的 NaYF(4):Yb/Er 上转换纳米粒子 UCNP-Ppa-RGD,用于靶向近红外光动力治疗。研究了 UCNP-Ppa-RGD 的性质,如形态、稳定性、光学光谱和单线态氧生成效率。结果表明,共价连接的原卟啉 IX 分子不仅稳定,而且保留了其光谱和功能特性。体外研究证实,与相应的阴性组相比,UCNP-Ppa-RGD 对整合素 α(v)β(3)阳性 U87-MG 细胞具有更强的靶向特异性。在适当剂量的 980nm 激光照射下,附着有光敏剂的纳米结构表现出低暗毒性和对癌细胞的高光毒性。这些结果首次证明了一种高度稳定和高效的光敏剂修饰的上转换纳米结构,可用于靶向近红外光动力治疗癌症。新型 UCNP-Ppa-RGD 纳米粒子可能为近红外光动力治疗提供一种强有力的替代方法,具有改善的肿瘤靶向特异性。