VA National Center for Patient Safety, Ann Arbor, Michigan 48106-0486, USA.
J Patient Saf. 2012 Jun;8(2):60-4. doi: 10.1097/PTS.0b013e31824ab987.
The Veterans Health Administration patient safety reporting system receives more than 100,000 reports annually. The information contained in these reports is primarily in the form of natural language text. Improving the ability to efficiently mine these patient safety reports for information is the objective of a proposed semi-supervised method.
A semi-supervised classification method leverages information from both labeled and unlabeled reports to predict categories for the unlabeled reports.
Two different scenarios involving a semi-supervised learning process are examined, and both demonstrate good predictive results.
The semi-supervised method shows much promise in assisting researchers and analysts toward accurately and more quickly separating reports of varying and often overlapping topics. The method is able to use the "stories" provided in patient safety reports to extend existing patient safety taxonomies beyond their static design.
退伍军人健康管理局(Veterans Health Administration)的患者安全报告系统每年接收超过 10 万份报告。这些报告中的信息主要以自然语言文本的形式呈现。提高从这些患者安全报告中高效挖掘信息的能力是拟议的半监督方法的目标。
一种半监督分类方法利用来自标记和未标记报告的信息来预测未标记报告的类别。
研究考察了两种涉及半监督学习过程的不同情况,结果都显示出了良好的预测效果。
该半监督方法在帮助研究人员和分析师准确、快速地分离不同且经常重叠主题的报告方面显示出很大的潜力。该方法能够利用患者安全报告中提供的“故事”,将现有的患者安全分类法扩展到其静态设计之外。