Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487 Greifswald, Germany.
Mol Genet Genomics. 2012 Jun;287(6):461-72. doi: 10.1007/s00438-012-0692-x. Epub 2012 Apr 28.
Yeast genes of phospholipid biosynthesis are negatively regulated by repressor protein Opi1 when precursor molecules inositol and choline (IC) are available. Opi1-triggered gene repression is mediated by recruitment of the Sin3 corepressor complex. In this study, we systematically investigated the regulatory contribution of subunits of Sin3 complexes and identified Pho23 as important for IC-dependent gene repression. Two non-overlapping regions within Pho23 mediate its direct interaction with Sin3. Previous work has shown that Sin3 recruits the histone deacetylase (HDAC) Rpd3 to execute gene repression. While deletion of SIN3 strongly alleviates gene repression by IC, an rpd3 null mutant shows almost normal regulation. We thus hypothesized that various HDACs may contribute to Sin3-mediated repression of IC-regulated genes. Indeed, a triple mutant lacking HDACs, Rpd3, Hda1 and Hos1, could phenocopy a sin3 single mutant. We show that these proteins are able to contact Sin3 in vitro and in vivo and mapped three distinct HDAC interaction domains, designated HID1, HID2 and HID3. HID3, which is identical to the previously described structural motif PAH4 (paired amphipathic helix), can bind all HDACs tested. Chromatin immunoprecipitation studies finally confirmed that Hda1 and Hos1 are recruited to promoters of phospholipid biosynthetic genes INO1 and CHO2.
当前体分子肌醇和胆碱 (IC) 可用时,酵母磷脂生物合成基因受到抑制蛋白 Opi1 的负调控。Opi1 触发的基因抑制是通过募集 Sin3 核心抑制复合物来介导的。在这项研究中,我们系统地研究了 Sin3 复合物亚基的调节贡献,并确定 Pho23 对 IC 依赖性基因抑制很重要。Pho23 内有两个不重叠的区域介导其与 Sin3 的直接相互作用。先前的工作表明,Sin3 招募组蛋白去乙酰化酶 (HDAC) Rpd3 来执行基因抑制。虽然 SIN3 的缺失强烈缓解了 IC 对基因的抑制,但 rpd3 缺失突变体的调节几乎正常。因此,我们假设各种 HDAC 可能有助于 Sin3 介导的 IC 调节基因的抑制。事实上,缺乏 HDACs(Rpd3、Hda1 和 Hos1)的三突变体可以模拟 sin3 单突变体。我们表明,这些蛋白质能够在体外和体内与 Sin3 接触,并绘制了三个不同的 HDAC 相互作用结构域,分别命名为 HID1、HID2 和 HID3。HID3 与先前描述的结构基序 PAH4(配对的双性螺旋)相同,能够结合所有测试的 HDAC。染色质免疫沉淀研究最终证实 Hda1 和 Hos1 被募集到磷脂生物合成基因 INO1 和 CHO2 的启动子上。