Suppr超能文献

心理学和神经科学中的贝叶斯牵强附会故事。

Bayesian just-so stories in psychology and neuroscience.

机构信息

School of Experimental Psychology, University of Bristol, England.

出版信息

Psychol Bull. 2012 May;138(3):389-414. doi: 10.1037/a0026450.

Abstract

According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak. This weakness relates to the many arbitrary ways that priors, likelihoods, and utility functions can be altered in order to account for the data that are obtained, making the models unfalsifiable. It further relates to the fact that Bayesian theories are rarely better at predicting data compared with alternative (and simpler) non-Bayesian theories. Second, we show that the empirical evidence for Bayesian theories in neuroscience is weaker still. There are impressive mathematical analyses showing how populations of neurons could compute in a Bayesian manner but little or no evidence that they do. Third, we challenge the general scientific approach that characterizes Bayesian theorizing in cognitive science. A common premise is that theories in psychology should largely be constrained by a rational analysis of what the mind ought to do. We question this claim and argue that many of the important constraints come from biological, evolutionary, and processing (algorithmic) considerations that have no adaptive relevance to the problem per se. In our view, these factors have contributed to the development of many Bayesian "just so" stories in psychology and neuroscience; that is, mathematical analyses of cognition that can be used to explain almost any behavior as optimal.

摘要

根据心理学和神经科学中的贝叶斯理论,思维和大脑在解决广泛的任务方面是(近乎)最优的。我们质疑这种观点,并认为更传统的非贝叶斯方法更有前途。我们提出了 3 个主要论点。首先,我们表明心理学中贝叶斯理论的经验证据是薄弱的。这种弱点与先验、似然和效用函数可以改变以解释所获得的数据的许多任意方式有关,使得模型不可证伪。它进一步与这样一个事实有关,即与替代(和更简单)的非贝叶斯理论相比,贝叶斯理论在预测数据方面很少更好。其次,我们表明神经科学中贝叶斯理论的经验证据更弱。有令人印象深刻的数学分析表明,神经元群体如何以贝叶斯方式进行计算,但几乎没有证据表明它们确实如此。第三,我们挑战了认知科学中贝叶斯理论的一般科学方法。一个共同的前提是,心理学理论应该主要受到对思维应该做什么的理性分析的限制。我们质疑这一主张,并认为许多重要的限制来自生物学、进化和处理(算法)方面的考虑,这些考虑本身与问题没有适应性相关性。在我们看来,这些因素促成了心理学和神经科学中许多贝叶斯“恰当”故事的发展;也就是说,对认知的数学分析可以用来解释几乎任何行为都是最优的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验