Suppr超能文献

贝叶斯置信度在最优决策中的应用。

Bayesian confidence in optimal decisions.

机构信息

Department of Experimental Psychology, University of Oxford.

Institute of Cognitive Neuroscience, University College London.

出版信息

Psychol Rev. 2024 Oct;131(5):1114-1160. doi: 10.1037/rev0000472. Epub 2024 Jul 18.

Abstract

The optimal way to make decisions in many circumstances is to track the difference in evidence collected in favor of the options. The drift diffusion model (DDM) implements this approach and provides an excellent account of decisions and response times. However, existing DDM-based models of confidence exhibit certain deficits, and many theories of confidence have used alternative, nonoptimal models of decisions. Motivated by the historical success of the DDM, we ask whether simple extensions to this framework might allow it to better account for confidence. Motivated by the idea that the brain will not duplicate representations of evidence, in all model variants decisions and confidence are based on the same evidence accumulation process. We compare the models to benchmark results, and successfully apply four qualitative tests concerning the relationships between confidence, evidence, and time, in a new preregistered study. Using computationally cheap expressions to model confidence on a trial-by-trial basis, we find that a subset of model variants also provide a very good to excellent account of precise quantitative effects observed in confidence data. Specifically, our results favor the hypothesis that confidence reflects the strength of accumulated evidence penalized by the time taken to reach the decision (Bayesian readout), with the penalty applied not perfectly calibrated to the specific task context. These results suggest there is no need to abandon the DDM or single accumulator models to successfully account for confidence reports. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

在许多情况下,做出决策的最佳方式是跟踪支持选项的证据差异。漂移扩散模型 (DDM) 实施了这种方法,并为决策和反应时间提供了极好的解释。然而,现有的基于 DDM 的置信模型存在某些缺陷,许多信心理论都使用了替代的、非最优的决策模型。受 DDM 的历史成功的启发,我们询问是否可以对该框架进行简单扩展,以便更好地解释信心。受大脑不会重复证据表示的观点的启发,在所有模型变体中,决策和信心都基于相同的证据积累过程。我们将这些模型与基准结果进行了比较,并在一项新的预先注册研究中成功应用了四项关于信心、证据和时间之间关系的定性测试。使用在逐次试验基础上对信心进行建模的计算上廉价的表达式,我们发现模型变体的一个子集也可以很好地解释在信心数据中观察到的精确定量效应。具体来说,我们的结果支持这样一种假设,即信心反映了累积证据的强度,这种强度受到做出决策所花费的时间的惩罚(贝叶斯读出),而这种惩罚并没有完全针对特定的任务情境进行校准。这些结果表明,没有必要放弃 DDM 或单一累加器模型来成功解释信心报告。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf4f/7617410/934c6a2c0d88/EMS202997-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验