Suppr超能文献

用于发现代谢功能的iJO1366大肠杆菌代谢网络重建的缺口填充分析。

Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions.

作者信息

Orth Jeffrey D, Palsson Bernhardø

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

出版信息

BMC Syst Biol. 2012 May 1;6:30. doi: 10.1186/1752-0509-6-30.

Abstract

BACKGROUND

The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network.

RESULTS

A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions.

CONCLUSIONS

Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking.

摘要

背景

大肠杆菌代谢网络的iJO1366重建是针对任何生物体可用的最完整、最准确的代谢重建之一。然而,由于我们对即使像这样经过充分研究的模式生物的了解也不完整,这个网络重建存在缺口和可能的错误。在iJO1366中共有208种受阻代谢物,代表了网络中的缺口。

结果

开发了一种新的模型改进工作流程,将基于模型的表型预测与实验数据进行比较,以填补缺口和纠正错误。从文献数据中获得了基于大肠杆菌基因必需性的Keio文库数据集,并与模型预测进行比较。然后使用SMILEY算法预测重建网络中最可能缺失的反应,从基于KEGG的通用代谢反应集中添加反应。通过将模型的更新版本与实验数据集进行比较来确定这些假定反应的可行性,并为最可行的反应预测基因。

结论

这些分析提出了对iJO1366代谢重建的诸多改进。进行了实验以验证几个计算预测,包括肌醇生长的新机制。本研究中的其他预测应该可以通过类似方法进行实验验证。验证这里做出的所有预测是一项艰巨但重要的任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4589/3423039/94341e3e27a0/1752-0509-6-30-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验