Suppr超能文献

在信息性缺失情况下重新参数化模式混合模型以进行敏感性分析。

Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout.

作者信息

Daniels M J, Hogan J W

机构信息

Department of Statistics, Iowa State University, 102G Snedecor Hall, Ames, Iowa 50011, USA.

出版信息

Biometrics. 2000 Dec;56(4):1241-8. doi: 10.1111/j.0006-341x.2000.01241.x.

Abstract

Pattern mixture models are frequently used to analyze longitudinal data where missingness is induced by dropout. For measured responses, it is typical to model the complete data as a mixture of multivariate normal distributions, where mixing is done over the dropout distribution. Fully parameterized pattern mixture models are not identified by incomplete data; Little (1993, Journal of the American Statistical Association 88, 125-134) has characterized several identifying restrictions that can be used for model fitting. We propose a reparameterization of the pattern mixture model that allows investigation of sensitivity to assumptions about nonidentified parameters in both the mean and variance, allows consideration of a wide range of nonignorable missing-data mechanisms, and has intuitive appeal for eliciting plausible missing-data mechanisms. The parameterization makes clear an advantage of pattern mixture models over parametric selection models, namely that the missing-data mechanism can be varied without affecting the marginal distribution of the observed data. To illustrate the utility of the new parameterization, we analyze data from a recent clinical trial of growth hormone for maintaining muscle strength in the elderly. Dropout occurs at a high rate and is potentially informative. We undertake a detailed sensitivity analysis to understand the impact of missing-data assumptions on the inference about the effects of growth hormone on muscle strength.

摘要

模式混合模型常用于分析因失访导致数据缺失的纵向数据。对于测量响应,通常将完整数据建模为多元正态分布的混合,其中混合是基于失访分布进行的。不完全数据无法识别完全参数化的模式混合模型;利特尔(1993年,《美国统计协会杂志》88卷,第125 - 134页)描述了几种可用于模型拟合的识别性限制。我们提出了一种模式混合模型的重新参数化方法,该方法允许研究对均值和方差中未识别参数假设的敏感性,允许考虑广泛的非忽略缺失数据机制,并且在引出合理的缺失数据机制方面具有直观吸引力。这种参数化明确了模式混合模型相对于参数选择模型的一个优势,即缺失数据机制可以改变而不影响观测数据的边际分布。为了说明新参数化的效用,我们分析了最近一项关于生长激素维持老年人肌肉力量的临床试验数据。失访率很高且可能提供信息。我们进行了详细的敏感性分析,以了解缺失数据假设对生长激素对肌肉力量影响推断的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验