Suppr超能文献

使用检验统计量的贝叶斯模型选择

Bayesian model selection using test statistics.

作者信息

Hu Jianhua, Johnson Valen E

机构信息

University of Texas M. D. Anderson Cancer Center, Houston, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2008 Oct 14;71(1):143-158. doi: 10.1111/j.1467-9868.2008.00678.x.

Abstract

Existing Bayesian model selection procedures require the specification of prior distributions on the parameters appearing in every model in the selection set. In practice, this requirement limits the application of Bayesian model selection methodology. To overcome this limitation, we propose a new approach towards Bayesian model selection that uses classical test statistics to compute Bayes factors between possible models. In several test cases, our approach produces results that are similar to previously proposed Bayesian model selection and model averaging techniques in which prior distributions were carefully chosen. In addition to eliminating the requirement to specify complicated prior distributions, this method offers important computational and algorithmic advantages over existing simulation-based methods. Because it is easy to evaluate the operating characteristics of this procedure for a given sample size and specified number of covariates, our method facilitates the selection of hyperparameter values through prior-predictive simulation.

摘要

现有的贝叶斯模型选择程序要求在选择集中的每个模型中出现的参数上指定先验分布。在实践中,这一要求限制了贝叶斯模型选择方法的应用。为了克服这一限制,我们提出了一种新的贝叶斯模型选择方法,该方法使用经典检验统计量来计算可能模型之间的贝叶斯因子。在几个测试案例中,我们的方法产生的结果与先前提出的贝叶斯模型选择和模型平均技术相似,在这些技术中先验分布是经过精心选择的。除了消除指定复杂先验分布的要求外,该方法还比现有的基于模拟的方法具有重要的计算和算法优势。由于对于给定的样本量和指定的协变量数量,很容易评估该程序的操作特性,我们的方法通过先验预测模拟促进了超参数值的选择。

相似文献

1
Bayesian model selection using test statistics.使用检验统计量的贝叶斯模型选择
J R Stat Soc Series B Stat Methodol. 2008 Oct 14;71(1):143-158. doi: 10.1111/j.1467-9868.2008.00678.x.
5
Bayesian One-Sided Variable Selection.贝叶斯单侧变量选择。
Multivariate Behav Res. 2022 Mar-May;57(2-3):264-278. doi: 10.1080/00273171.2020.1813067. Epub 2020 Sep 1.
8
Bayesian Empirical Likelihood Methods for Quantile Comparisons.用于分位数比较的贝叶斯经验似然方法。
J Korean Stat Soc. 2017 Dec;46(4):518-538. doi: 10.1016/j.jkss.2017.03.002. Epub 2017 Apr 10.

引用本文的文献

1
On Bayes factors for hypothesis tests.关于假设检验的贝叶斯因子。
Psychon Bull Rev. 2025 Jun;32(3):1070-1094. doi: 10.3758/s13423-024-02612-2. Epub 2024 Nov 25.
2
Empirical Bayes factors for common hypothesis tests.常用假设检验的经验贝叶斯因子。
PLoS One. 2024 Feb 22;19(2):e0297874. doi: 10.1371/journal.pone.0297874. eCollection 2024.
3
Bayesian Distance Clustering.贝叶斯距离聚类
J Mach Learn Res. 2021 Jan-Dec;22.
6
Bayesian Methods in Regulatory Science.监管科学中的贝叶斯方法。
Stat Biopharm Res. 2020;12(2):130-136. doi: 10.1080/19466315.2019.1668843. Epub 2019 Oct 29.

本文引用的文献

1
Gene selection: a Bayesian variable selection approach.基因选择:一种贝叶斯变量选择方法。
Bioinformatics. 2003 Jan;19(1):90-7. doi: 10.1093/bioinformatics/19.1.90.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验