The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States.
Langmuir. 2012 May 29;28(21):8205-15. doi: 10.1021/la300515a. Epub 2012 May 14.
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell thickness, and the outer CdS/ZnS and CdSe/ZnS structures have type-I band offsets. The emission maxima of the assembled heterostructures were found to be dependent on the CdTe core size, with a wider range of spectral tunability observed for the smaller cores. Because of encapsulation effects, the formation of successive shells resulted in a considerable increase in the photoluminescence quantum yield; however, identifying optimal shell thicknesses was required to achieve the maximum quantum yield. Photoluminescence lifetime measurements revealed that the decrease in the quantum yield of thick-shell nanocrystals was caused by a substantial decrease in the radiative rate constant. By tuning the diameter of the core and the thickness of each shell, a broad range of high quantum yield (up to 45%) nanocrystal heterostructures with emission ranging from visible to NIR wavelengths (500-730 nm) were obtained. This versatile route to engineering the optical properties of nanocrystal heterostructures will provide new opportunities for applications in bioimaging and biolabeling.
在这里,我们展示了使用三肽谷胱甘肽(GSH)作为配体,通过水相合成由 CdTe 核包裹的 CdS/ZnS 或 CdSe/ZnS 壳的胶体纳米晶异质结构。根据核的大小和壳的厚度,内 CdTe/CdS 和 CdTe/CdSe 异质结构具有 I 型、准 II 型或 II 型能带偏移,而外 CdS/ZnS 和 CdSe/ZnS 结构具有 I 型能带偏移。组装的异质结构的发射最大值被发现取决于 CdTe 核的大小,较小的核观察到更宽的光谱可调谐范围。由于封装效应,连续壳的形成导致光致发光量子产率显著增加;然而,需要确定最佳的壳厚度以达到最大的量子产率。光致发光寿命测量表明,厚壳纳米晶体量子产率的降低是由于辐射速率常数的大幅降低所致。通过调整核的直径和每个壳的厚度,可以获得发射范围从可见光到近红外波长(500-730nm)的具有高量子产率(高达 45%)的纳米晶异质结构的宽范围。这种工程纳米晶异质结构光学性质的多功能方法将为生物成像和生物标记应用提供新的机会。