Maternal and Fetal Health Research Centre, School of Biomedicine, Manchester Academic Health Science Centre, The University of Manchester, St. Mary’s Hospital, Manchester, UK.
Am J Physiol Regul Integr Comp Physiol. 2012 Jul 1;303(1):R86-93. doi: 10.1152/ajpregu.00600.2011. Epub 2012 May 2.
Fetal growth restriction (FGR) is the inability of a fetus to reach its genetically predetermined growth potential. In the absence of a genetic anomaly or maternal undernutrition, FGR is attributable to "placental insufficiency": inappropriate maternal/fetal blood flow, reduced nutrient transport or morphological abnormalities of the placenta (e.g., altered barrier thickness). It is not known whether these diverse factors act singly, or in combination, having additive effects that may lead to greater FGR severity. We suggest that multiplicity of such dysfunction might underlie the diverse FGR phenotypes seen in humans. Pregnant endothelial nitric oxide synthase knockout (eNOS(-/-)) dams exhibit dysregulated vascular adaptations to pregnancy, and eNOS(-/-) fetuses of such dams display FGR. We investigated the hypothesis that both altered vascular function and placental nutrient transport contribute to the FGR phenotype. eNOS(-/-) dams were hypertensive prior to and during pregnancy and at embryonic day (E) 18.5 were proteinuric. Isolated uterine artery constriction was significantly increased, and endothelium-dependent relaxation significantly reduced, compared with wild-type (WT) mice. eNOS(-/-) fetal weight and abdominal circumference were significantly reduced compared with WT. Unidirectional maternofetal (14)C-methylaminoisobutyric acid (MeAIB) clearance and sodium-dependent (14)C-MeAIB uptake into mouse placental vesicles were both significantly lower in eNOS(-/-) fetuses, indicating diminished placental nutrient transport. eNOS(-/-) mouse placentas demonstrated increased hypoxia at E17.5, with elevated superoxide compared with WT. We propose that aberrant uterine artery reactivity in eNOS(-/-) mice promotes placental hypoxia with free radical formation, reducing placental nutrient transport capacity and fetal growth. We further postulate that this mouse model demonstrates "uteroplacental hypoxia," providing a new framework for understanding the etiology of FGR in human pregnancy.
胎儿生长受限(FGR)是指胎儿无法达到其遗传预定的生长潜力。在没有遗传异常或母体营养不良的情况下,FGR归因于“胎盘功能不全”:母体/胎儿血液流动不当、营养物质转运减少或胎盘形态异常(例如,屏障厚度改变)。目前尚不清楚这些不同的因素是单独作用,还是共同作用,产生累加效应,从而导致更严重的 FGR。我们认为,这些功能障碍的多样性可能是人类所见不同 FGR 表型的基础。妊娠内皮型一氧化氮合酶敲除(eNOS(-/-)) 母鼠表现出妊娠血管调节失调,且此类母鼠的 eNOS(-/-) 胎儿存在 FGR。我们研究了以下假设,即血管功能改变和胎盘营养物质转运均导致 FGR 表型。eNOS(-/-) 母鼠在妊娠前和妊娠期间以及胚胎期 18.5 时均患有高血压,并出现蛋白尿。与野生型(WT)小鼠相比,其分离的子宫动脉收缩明显增加,内皮依赖性舒张明显降低。与 WT 相比,eNOS(-/-) 胎儿体重和腹围明显减小。与 WT 相比,eNOS(-/-) 胎儿单向母胎(14)C-甲基氨基异丁酸(MeAIB)清除率和钠依赖性(14)C-MeAIB 摄取到小鼠胎盘囊泡均显著降低,表明胎盘营养物质转运减少。与 WT 相比,eNOS(-/-) 小鼠胎盘在 E17.5 时出现缺氧增加,超氧化物水平升高。我们提出,eNOS(-/-) 小鼠子宫动脉反应异常可促进胎盘缺氧和自由基形成,降低胎盘营养物质转运能力和胎儿生长。我们进一步假设,这种小鼠模型表现出“子宫胎盘缺氧”,为理解人类妊娠中 FGR 的病因提供了新的框架。