Suppr超能文献

绘制药物-靶点相互作用网络。

Mapping drug-target interaction networks.

作者信息

Tian Longzhang, Zhang Shuxing

机构信息

M.D. Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2336-9. doi: 10.1109/IEMBS.2009.5335053.

Abstract

Molecular polypharmacological studies have gained more and more attention as they are important in predicting drug off-target properties and potential toxicity/side effect. The explosive growth of biomedical data provides us an opportunity to develop novel strategies to conduct such studies by analyzing molecular interaction networks. In this paper, we present an integrated web application that is implemented based on more than 5,000 drugs and 56,000 biological macromolecule structures. With efficient search of drug information (biological targets, pharmacology, side effect, etc.) and chemical similarity, molecular maps can be constructed to demonstrate the relationships among multiple drugs and receptors. In addition, receptor information can also be employed to map the interaction network. The 3D structures of available drug-receptor complexes can be visualized via our web server, and the query results will be used to identify similar structures for any given drugs as well as their cross interactions with other biological targets. Our implementation provides an efficient way to evaluate the safety and polypharmacological properties of chemical compounds.

摘要

分子多药理学研究越来越受到关注,因为它们在预测药物脱靶特性和潜在毒性/副作用方面具有重要意义。生物医学数据的爆炸式增长为我们提供了一个机会,通过分析分子相互作用网络来开发进行此类研究的新策略。在本文中,我们展示了一个基于5000多种药物和56000多个生物大分子结构实现的集成网络应用程序。通过高效搜索药物信息(生物靶点、药理学、副作用等)和化学相似性,可以构建分子图谱来展示多种药物与受体之间的关系。此外,受体信息也可用于绘制相互作用网络。可用药物-受体复合物的三维结构可通过我们的网络服务器进行可视化,查询结果将用于识别任何给定药物的相似结构及其与其他生物靶点的交叉相互作用。我们的实现提供了一种评估化合物安全性和多药理学特性的有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验