Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Genetics. 2012 May;191(1):7-20. doi: 10.1534/genetics.112.140145.
We discuss the regulation of the histone genes of the budding yeast Saccharomyces cerevisiae. These include genes encoding the major core histones (H3, H4, H2A, and H2B), histone H1 (HHO1), H2AZ (HTZ1), and centromeric H3 (CSE4). Histone production is regulated during the cell cycle because the cell must replicate both its DNA during S phase and its chromatin. Consequently, the histone genes are activated in late G1 to provide sufficient core histones to assemble the replicated genome into chromatin. The major core histone genes are subject to both positive and negative regulation. The primary control system is positive, mediated by the histone gene-specific transcription activator, Spt10, through the histone upstream activating sequences (UAS) elements, with help from the major G1/S-phase activators, SBF (Swi4 cell cycle box binding factor) and perhaps MBF (MluI cell cycle box binding factor). Spt10 binds specifically to the histone UAS elements and contains a putative histone acetyltransferase domain. The negative system involves negative regulatory elements in the histone promoters, the RSC chromatin-remodeling complex, various histone chaperones [the histone regulatory (HIR) complex, Asf1, and Rtt106], and putative sequence-specific factors. The SWI/SNF chromatin-remodeling complex links the positive and negative systems. We propose that the negative system is a damping system that modulates the amount of transcription activated by Spt10 and SBF. We hypothesize that the negative system mediates negative feedback on the histone genes by histone proteins through the level of saturation of histone chaperones with histone. Thus, the negative system could communicate the degree of nucleosome assembly during DNA replication and the need to shut down the activating system under replication-stress conditions. We also discuss post-transcriptional regulation and dosage compensation of the histone genes.
我们讨论了酿酒酵母芽殖酵母的组蛋白基因的调控。这些基因包括编码主要核心组蛋白(H3、H4、H2A 和 H2B)、组蛋白 H1(HHO1)、H2AZ(HTZ1)和着丝粒 H3(CSE4)的基因。由于细胞在 S 期必须复制其 DNA 及其染色质,因此在细胞周期中调节组蛋白的产生。因此,组蛋白基因在 G1 晚期被激活,以提供足够的核心组蛋白将复制的基因组组装成染色质。主要核心组蛋白基因受到正调控和负调控的影响。主要的控制系统是正的,由组蛋白基因特异性转录激活剂 Spt10 通过组蛋白上游激活序列(UAS)元件介导,辅之以主要的 G1/S 期激活剂 SBF(Swi4 细胞周期盒结合因子)和可能的 MBF(MluI 细胞周期盒结合因子)。Spt10 特异性地结合到组蛋白 UAS 元件上,并含有一个假定的组蛋白乙酰转移酶结构域。负系统涉及组蛋白启动子中的负调控元件、RSC 染色质重塑复合物、各种组蛋白伴侣[组蛋白调节(HIR)复合物、Asf1 和 Rtt106]和假定的序列特异性因子。SWI/SNF 染色质重塑复合物将正系统和负系统联系起来。我们提出,负系统是一个调制度系统,通过组蛋白伴侣与组蛋白的饱和程度来调节 Spt10 和 SBF 激活的转录量。我们假设负系统通过组蛋白蛋白介导对组蛋白基因的负反馈,通过组蛋白伴侣与组蛋白的饱和程度来调节组蛋白基因的转录量。因此,负系统可以在 DNA 复制过程中传递核小体组装的程度,并在复制应激条件下需要关闭激活系统。我们还讨论了组蛋白基因的转录后调控和剂量补偿。