Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7115, USA.
J Biol Chem. 2011 Jun 10;286(23):20701-9. doi: 10.1074/jbc.M111.235234. Epub 2011 Apr 6.
Large-conductance voltage- and Ca(2+)-dependent K(+) (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the "gating ring"), which confers sensitivity to intracellular Ca(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca(2+)- and Mg(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca(2+)-binding site (the "calcium bowl") reduced the Ca(2+) and abolished the Mg(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca(2+)-binding site and that Mg(2+) can bind to the calcium bowl with less affinity than Ca(2+). Dynamic light scattering analysis revealed a reversible Ca(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel.
大电导电压和钙依赖性钾 (BK,也称为 MaxiK) 通道是同四聚体蛋白,具有广泛的表达模式,能够强烈调节细胞兴奋性和钙稳态。它们的激活是由跨膜电压传感器和一个大 (>300 kDa) 的细胞质末端复杂协同作用产生的,这个大的末端(“门控环”)赋予了对细胞内钙和其他配体的敏感性。然而,门控环的分子和生物物理操作仍然不清楚。我们使用光谱和粒子尺度光学方法来研究生理相关条件下人类 BK 门控环的金属感应特性。这个功能分子传感器在生理相关浓度下经历钙和镁依赖性构象变化,通过时间分辨和稳态荧光光谱检测到。缺乏可检测的钡(Ba(2+))引起的结构变化定义了门控环的金属选择性。高亲和力钙结合位点(“钙碗”)的中和降低了 Ca(2+)和 Mg(2+) 对结构重排的依赖性。与电生理研究一致,这些发现提供了生化证据,表明门控环具有另外一个高亲和力的钙结合位点,并且 Mg(2+) 可以比 Ca(2+) 更弱地结合到钙碗中。动态光散射分析显示门控环的水动力半径在 Ca(2+) 依赖性可逆下降,这与更紧凑的整体形状一致。这些在生理相关条件下解析的结构变化可能代表了引发人类 BK 通道配体诱导激活的分子转变。