Intelligent Systems Research Centre-ISRC, University of Ulster, Magee Campus, Londonderry BT48 7JL, Northern Ireland, United Kingdom.
Neural Netw. 2012 Sep;33:42-57. doi: 10.1016/j.neunet.2012.04.004. Epub 2012 Apr 23.
The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware.
大脑在处理信息和容忍故障方面效率很高。可以说,基本的处理单元是神经元和突触,它们以复杂的模式相互连接。计算机科学家和工程师旨在利用这种效率,构建能够模拟大脑关键信息处理原理的人工神经网络系统。然而,现有的方法无法提供所需的数十亿个神经元和突触的密集互连。最近,一种基于片上网络 (NoC) 和尖峰神经网络 (SNN) 的可重构和受生物启发的范例被提出作为实现高效、鲁棒计算平台的新方法。然而,将 NoC 用作大规模 SNN 的互连结构需要在可扩展性、吞吐量、神经元/突触比和功耗之间进行很好的权衡。本文提出了一种新颖的基于流量感知的自适应 NoC 路由器,它是一种名为 EMBRACE(在硬件中模拟生物启发架构)的嵌入式混合信号 SNN 架构的一部分。所提出的自适应 NoC 路由器为 EMBRACE 提供了神经元间的连接,通过自适应路由器流量拥塞来维持路由器通信并避免丢弃路由器数据包。使用 90nm CMOS 技术对自适应路由器的吞吐量、功率和面积性能进行了分析,结果表明该自适应路由器在该领域优于现有的 NoC。还在 Stratix II FPGA 上实现的 4×2 路由器阵列的实时流量拥塞中验证了路由器的自适应行为。所提出的结果证明了在 EMBRACE 架构中使用所提出的自适应 NoC 路由器来在嵌入式硬件上实现大规模 SNN 的可行性。