Suppr超能文献

用于实时语音识别的基于现场可编程门阵列的紧凑型硬件液态机器

Compact hardware liquid state machines on FPGA for real-time speech recognition.

作者信息

Schrauwen Benjamin, D'Haene Michiel, Verstraeten David, Campenhout Jan Van

机构信息

Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium.

出版信息

Neural Netw. 2008 Mar-Apr;21(2-3):511-23. doi: 10.1016/j.neunet.2007.12.009. Epub 2007 Dec 23.

Abstract

Hardware implementations of Spiking Neural Networks are numerous because they are well suited for implementation in digital and analog hardware, and outperform classic neural networks. This work presents an application driven digital hardware exploration where we implement real-time, isolated digit speech recognition using a Liquid State Machine. The Liquid State Machine is a recurrent neural network of spiking neurons where only the output layer is trained. First we test two existing hardware architectures which we improve and extend, but that appears to be too fast and thus area consuming for this application. Next, we present a scalable, serialized architecture that allows a very compact implementation of spiking neural networks that is still fast enough for real-time processing. All architectures support leaky integrate-and-fire membranes with exponential synaptic models. This work shows that there is actually a large hardware design space of Spiking Neural Network hardware that can be explored. Existing architectures have only spanned part of it.

摘要

脉冲神经网络的硬件实现方式众多,因为它们非常适合在数字和模拟硬件中实现,并且性能优于经典神经网络。这项工作展示了一种应用驱动的数字硬件探索,我们使用液态机器实现了实时、孤立数字语音识别。液态机器是一种由脉冲神经元组成的递归神经网络,其中只有输出层经过训练。首先,我们测试了两种现有的硬件架构,并对其进行改进和扩展,但这两种架构对于此应用来说似乎太快,因此占用面积较大。接下来,我们提出了一种可扩展的串行架构,它允许对脉冲神经网络进行非常紧凑的实现,并且对于实时处理来说仍然足够快。所有架构都支持具有指数突触模型的泄漏积分发放膜。这项工作表明,实际上脉冲神经网络硬件存在一个很大的硬件设计空间可供探索。现有的架构只涵盖了其中一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验