Suppr超能文献

自发性振荡活动的大规模皮质相关结构。

Large-scale cortical correlation structure of spontaneous oscillatory activity.

机构信息

Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

Nat Neurosci. 2012 Jun;15(6):884-90. doi: 10.1038/nn.3101.

Abstract

Little is known about the brain-wide correlation of electrophysiological signals. We found that spontaneous oscillatory neuronal activity exhibited frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography. Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz) and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency-specific power envelope correlations.

摘要

目前对于大脑中电生理信号的整体相关性还知之甚少。我们发现自发振荡神经元活动在人类大脑中表现出具有频率特异性的空间相关结构。我们开发了一种分析方法,可以排除由于电生理测量的空间分辨率有限而导致的信号功率的虚假相关性。我们将这种方法应用于从脑磁图重建的自发神经元活动的源估计。总的来说,皮质区域之间的功率相关性在 alpha 到 beta 频带(8-32 Hz)最强,相关性模式取决于基础振荡频率。全局中枢位于theta 频带(4-6 Hz)的内侧颞叶、alpha 到 beta 频带(8-23 Hz)的外侧顶叶区域以及更高频率(32-45 Hz)的感觉运动区域。我们的数据表明,各种大规模皮质网络中的相互作用可能反映在特定频率的功率包络相关性中。

相似文献

1
Large-scale cortical correlation structure of spontaneous oscillatory activity.
Nat Neurosci. 2012 Jun;15(6):884-90. doi: 10.1038/nn.3101.
3
Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG.
Neuroimage. 2016 Apr 1;129:345-355. doi: 10.1016/j.neuroimage.2016.01.055. Epub 2016 Jan 28.
4
Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks.
Nat Commun. 2018 Jul 30;9(1):2987. doi: 10.1038/s41467-018-05316-z.
5
Cortical correlation structure of aperiodic neuronal population activity.
Neuroimage. 2021 Dec 15;245:118672. doi: 10.1016/j.neuroimage.2021.118672. Epub 2021 Oct 26.
7
Task-sensitive reconfiguration of corticocortical 6-20 Hz oscillatory coherence in naturalistic human performance.
Hum Brain Mapp. 2015 Jul;36(7):2455-69. doi: 10.1002/hbm.22784. Epub 2015 Mar 11.
8
Temporal dynamics of spontaneous MEG activity in brain networks.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6040-5. doi: 10.1073/pnas.0913863107. Epub 2010 Mar 16.
9
Evaluation of different measures of functional connectivity using a neural mass model.
Neuroimage. 2004 Feb;21(2):659-73. doi: 10.1016/j.neuroimage.2003.10.006.
10
Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution.
Neuroimage. 2012 Feb 15;59(4):3909-21. doi: 10.1016/j.neuroimage.2011.11.005. Epub 2011 Nov 9.

引用本文的文献

1
OPM-MEG reveals dynamics of beta bursts underlying attentional processes in sensory cortex.
Sci Rep. 2025 Aug 19;15(1):30471. doi: 10.1038/s41598-025-08037-8.
2
Demonstrating equivalence across magnetoencephalography scanner platforms using neural fingerprinting.
Imaging Neurosci (Camb). 2025 May 21;3. doi: 10.1162/IMAG.a.10. eCollection 2025.
3
The fluctuations of alpha power: Bimodalities, connectivity, and neural mass models.
Imaging Neurosci (Camb). 2025 Jul 2;3. doi: 10.1162/IMAG.a.64. eCollection 2025.
4
Association between theta-band resting-state functional connectivity and declarative memory abilities in children.
Imaging Neurosci (Camb). 2025 May 7;3. doi: 10.1162/imag_a_00555. eCollection 2025.
5
Do try this at home: Age prediction from sleep and meditation with large-scale low-cost mobile EEG.
Imaging Neurosci (Camb). 2024 Jun 21;2. doi: 10.1162/imag_a_00189. eCollection 2024.
6
Towards a more robust non-invasive assessment of functional connectivity.
Imaging Neurosci (Camb). 2024 Mar 28;2. doi: 10.1162/imag_a_00119. eCollection 2024.
7
Online functional connectivity analysis of large all-to-all networks in MNE Scan.
Imaging Neurosci (Camb). 2024 Sep 25;2. doi: 10.1162/imag_a_00296. eCollection 2024.
8
The dissociative role of bursting and non-bursting neural activity in the oscillatory nature of functional brain networks.
Imaging Neurosci (Camb). 2024 Jul 17;2. doi: 10.1162/imag_a_00231. eCollection 2024.
9
Test-retest reliability of the human connectome: An OPM-MEG study.
Imaging Neurosci (Camb). 2023 Oct 9;1. doi: 10.1162/imag_a_00020. eCollection 2023.

本文引用的文献

3
Spectral fingerprints of large-scale neuronal interactions.
Nat Rev Neurosci. 2012 Jan 11;13(2):121-34. doi: 10.1038/nrn3137.
4
Functional network organization of the human brain.
Neuron. 2011 Nov 17;72(4):665-78. doi: 10.1016/j.neuron.2011.09.006.
5
Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis.
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):19066-71. doi: 10.1073/pnas.1110024108. Epub 2011 Nov 7.
6
Investigating the electrophysiological basis of resting state networks using magnetoencephalography.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16783-8. doi: 10.1073/pnas.1112685108. Epub 2011 Sep 19.
7
The hippocampus: hub of brain network communication for memory.
Trends Cogn Sci. 2011 Jul;15(7):310-8. doi: 10.1016/j.tics.2011.05.008. Epub 2011 Jun 21.
8
Experimental and theoretical approaches to conscious processing.
Neuron. 2011 Apr 28;70(2):200-27. doi: 10.1016/j.neuron.2011.03.018.
9
A framework for local cortical oscillation patterns.
Trends Cogn Sci. 2011 May;15(5):191-9. doi: 10.1016/j.tics.2011.03.007. Epub 2011 Apr 12.
10
Measuring functional connectivity using MEG: methodology and comparison with fcMRI.
Neuroimage. 2011 Jun 1;56(3):1082-104. doi: 10.1016/j.neuroimage.2011.02.054. Epub 2011 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验