Suppr超能文献

脑网络中自发性 MEG 活动的时间动态。

Temporal dynamics of spontaneous MEG activity in brain networks.

机构信息

Institute for Advanced Biomedical Technologies, G D'Annunzio University Foundation, G D'Annunzio University, 66100 Chieti, Italy.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6040-5. doi: 10.1073/pnas.0913863107. Epub 2010 Mar 16.

Abstract

Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here, we describe magnetoencephalographic correspondents of two well-characterized RSNs: the dorsal attention and the default mode networks. Seed-based correlation mapping was performed using time-dependent MEG power reconstructed at each voxel within the brain. The topography of RSNs computed on the basis of extended (5 min) epochs was similar to that observed with fMRI but confined to the same hemisphere as the seed region. Analyses taking into account the nonstationarity of MEG activity showed transient formation of more complete RSNs, including nodes in the contralateral hemisphere. Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands-that is, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses.

摘要

功能磁共振成像(fMRI)研究表明,在静息觉醒期间,血氧水平依赖(BOLD)信号的低频(<0.1 Hz)自发波动在分布式的大脑皮质和皮质下网络(静息态网络,RSN)内是相干的。RSN 的神经机制仍知之甚少。在这里,我们描述了两种特征明确的 RSN 的脑磁图对应物:背侧注意网络和默认模式网络。使用在大脑内每个体素重建的时变 MEG 功率进行基于种子的相关映射。基于扩展(5 分钟)时段计算的 RSN 的拓扑结构与 fMRI 观察到的相似,但仅限于与种子区域相同的半球。考虑到 MEG 活动的非平稳性的分析显示,更完整的 RSN 包括对侧半球中的节点的瞬态形成。频谱分析表明,RSN 在 MEG 中表现为带限功率的同步调制,主要在θ、α和β频段内,即与事件相关 BOLD 反应的局部电生理相关物的频率较慢。

相似文献

1
Temporal dynamics of spontaneous MEG activity in brain networks.脑网络中自发性 MEG 活动的时间动态。
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6040-5. doi: 10.1073/pnas.0913863107. Epub 2010 Mar 16.
3
Spectral characteristics of resting state networks.静息态网络的频谱特征。
Prog Brain Res. 2011;193:259-76. doi: 10.1016/B978-0-444-53839-0.00017-X.

引用本文的文献

9
Restless reachability problems in temporal graphs.时态图中的不安可达性问题。
Knowl Inf Syst. 2025;67(7):5651-5697. doi: 10.1007/s10115-025-02405-6. Epub 2025 Apr 1.

本文引用的文献

2
Key role of coupling, delay, and noise in resting brain fluctuations.耦合、延迟和噪声在静息脑波动中的关键作用。
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7. doi: 10.1073/pnas.0901831106. Epub 2009 Jun 3.
10
Noise during rest enables the exploration of the brain's dynamic repertoire.休息时的噪音有助于探索大脑的动态功能。
PLoS Comput Biol. 2008 Oct;4(10):e1000196. doi: 10.1371/journal.pcbi.1000196. Epub 2008 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验