School of Life Sciences, University of Skövde, PO Box 408, 541 28, Skövde, Sweden.
J Mol Model. 2012 Sep;18(9):4249-62. doi: 10.1007/s00894-012-1419-y. Epub 2012 May 6.
Previously, our in silico analyses identified four candidate genes that might be involved in uptake and/or accumulation of arsenics in plants: arsenate reductase 2 (ACR2), phytochelatin synthase 1 (PCS1) and two multi-drug resistant proteins (MRP1 and MRP2) [Lund et al. (2010) J Biol Syst 18:223-224]. We also postulated that one of these four genes, ACR2, seems to play a central role in this process. To investigate further, we have constructed a 3D structure of the Arabidopsis thaliana ACR2 protein using the iterative implementation of the threading assembly refinement (I-TASSER) server. These analyses revealed that, for catalytic metabolism of arsenate, the arsenate binding-loop (AB-loop) and residues Phe-53, Phe-54, Cys-134, Cys-136, Cys-141, Cys-145, and Lys-135 are essential for reducing arsenate to arsenic intermediates (arsenylated enzyme-substrate intermediates) and arsenite in plants. Thus, functional predictions suggest that the ACR2 protein is involved in the conversion of arsenate to arsenite in plant cells. To validate the in silico results, we exposed a transfer-DNA (T-DNA)-tagged mutant of A. thaliana (mutation in the ACR2 gene) to various amounts of arsenic. Reverse transcriptase PCR revealed that the mutant exhibits significantly reduced expression of the ACR2 gene. Spectrophotometric analyses revealed that the amount of accumulated arsenic compounds in this mutant was approximately six times higher than that observed in control plants. The results obtained from in silico analyses are in complete agreement with those obtained in laboratory experiments.
先前,我们的计算机分析鉴定了四个可能参与植物砷吸收和/或积累的候选基因:砷酸盐还原酶 2(ACR2)、植物螯合肽合酶 1(PCS1)和两种多药耐药蛋白(MRP1 和 MRP2)[Lund 等人,(2010)J Biol Syst 18:223-224]。我们还推测,这四个基因中的一个,ACR2,似乎在这个过程中起着核心作用。为了进一步研究,我们使用迭代实施的线程组装精化(I-TASSER)服务器构建了拟南芥 ACR2 蛋白的 3D 结构。这些分析表明,对于砷酸盐的催化代谢,砷酸盐结合环(AB 环)和残基 Phe-53、Phe-54、Cys-134、Cys-136、Cys-141、Cys-145 和 Lys-135 对于将砷酸盐还原为砷中间产物(砷化酶-底物中间产物)和植物中的亚砷酸盐是必不可少的。因此,功能预测表明,ACR2 蛋白参与了植物细胞中砷酸盐向亚砷酸盐的转化。为了验证计算机模拟的结果,我们将拟南芥的 T-DNA(转移 DNA)标记突变体(ACR2 基因中的突变)暴露于不同量的砷。逆转录 PCR 显示突变体的 ACR2 基因表达显著降低。分光光度分析表明,该突变体中积累的砷化合物的量约为对照植物的六倍。计算机模拟分析得到的结果与实验室实验得到的结果完全一致。