Suppr超能文献

药物再利用:转化药理学、化学、计算机与临床。

Drug repurposing: translational pharmacology, chemistry, computers and the clinic.

机构信息

Department of Oncology, Georgetown Lombardi Cancer Center, USA.

出版信息

Curr Top Med Chem. 2013;13(18):2328-36. doi: 10.2174/15680266113136660163.

Abstract

The process of discovering a pharmacological compound that elicits a desired clinical effect with minimal side effects is a challenge. Prior to the advent of high-performance computing and large-scale screening technologies, drug discovery was largely a serendipitous endeavor, as in the case of thalidomide for erythema nodosum leprosum or cancer drugs in general derived from flora located in far-reaching geographic locations. More recently, de novo drug discovery has become a more rationalized process where drug-target-effect hypotheses are formulated on the basis of already known compounds/protein targets and their structures. Although this approach is hypothesis-driven, the actual success has been very low, contributing to the soaring costs of research and development as well as the diminished pharmaceutical pipeline in the United States. In this review, we discuss the evolution in computational pharmacology as the next generation of successful drug discovery and implementation in the clinic where high-performance computing (HPC) is used to generate and validate drug-target-effect hypotheses completely in silico. The use of HPC would decrease development time and errors while increasing productivity prior to in vitro, animal and human testing. We highlight approaches in chemoinformatics, bioinformatics as well as network biopharmacology to illustrate potential avenues from which to design clinically efficacious drugs. We further discuss the implications of combining these approaches into an integrative methodology for high-accuracy computational predictions within the context of drug repositioning for the efficient streamlining of currently approved drugs back into clinical trials for possible new indications.

摘要

发现一种具有理想临床效果且副作用最小的药理学化合物的过程是一项挑战。在高性能计算和大规模筛选技术出现之前,药物发现在很大程度上是一种偶然的努力,就像红斑狼疮或一般癌症药物那样,源自遥远地理区域的植物。最近,从头药物发现已成为一个更加合理化的过程,其中药物靶标-效应假说基于已知的化合物/蛋白质靶标及其结构来制定。尽管这种方法是基于假设的,但实际成功率非常低,导致研究和开发成本飙升,以及美国制药管道减少。在这篇综述中,我们讨论了计算药理学的发展,因为它是下一代成功的药物发现和在临床中的实施,其中高性能计算(HPC)用于完全在计算机中生成和验证药物靶标-效应假说。使用 HPC 将减少开发时间和错误,同时在体外、动物和人体测试之前提高生产力。我们强调化学生物信息学、生物信息学以及网络生物药理学中的方法,以说明从哪些方面可以设计出具有临床疗效的药物。我们进一步讨论了将这些方法结合到一种综合方法中的意义,以在药物重定位的背景下进行高精度计算预测,从而有效地将目前批准的药物重新纳入临床试验,以寻求可能的新适应症。

相似文献

1
Drug repurposing: translational pharmacology, chemistry, computers and the clinic.
Curr Top Med Chem. 2013;13(18):2328-36. doi: 10.2174/15680266113136660163.
2
Drug repurposing in amyotrophic lateral sclerosis (ALS).
Expert Opin Drug Discov. 2025 Apr;20(4):447-464. doi: 10.1080/17460441.2025.2474661. Epub 2025 Mar 7.
3
Predicting new indications for approved drugs using a proteochemometric method.
J Med Chem. 2012 Aug 9;55(15):6832-48. doi: 10.1021/jm300576q. Epub 2012 Jul 25.
4
5
Identification of drug candidates and repurposing opportunities through compound-target interaction networks.
Expert Opin Drug Discov. 2015 Dec;10(12):1333-45. doi: 10.1517/17460441.2015.1096926. Epub 2015 Oct 1.
6
Old friends in new guise: repositioning of known drugs with structural bioinformatics.
Brief Bioinform. 2011 Jul;12(4):312-26. doi: 10.1093/bib/bbr011. Epub 2011 Mar 26.
8
In silico drug repositioning: from large-scale transcriptome data to therapeutics.
Arch Pharm Res. 2019 Oct;42(10):879-889. doi: 10.1007/s12272-019-01176-3. Epub 2019 Sep 3.
9
Computational Drug Repurposing: Current Trends.
Curr Med Chem. 2019;26(28):5389-5409. doi: 10.2174/0929867325666180530100332.
10
Computational and experimental advances in drug repositioning for accelerated therapeutic stratification.
Curr Top Med Chem. 2015;15(1):5-20. doi: 10.2174/1568026615666150112103510.

引用本文的文献

2
Discovery of VEGFR2 inhibitors by integrating naïve Bayesian classification, molecular docking and drug screening approaches.
RSC Adv. 2018 Jan 30;8(10):5286-5297. doi: 10.1039/c7ra12259d. eCollection 2018 Jan 29.
4
Inventing new therapies without reinventing the wheel: the power of drug repurposing.
Br J Pharmacol. 2018 Jan;175(2):165-167. doi: 10.1111/bph.14081.
5
An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors.
Bioorg Med Chem. 2017 Dec 1;25(23):6248-6265. doi: 10.1016/j.bmc.2017.03.061. Epub 2017 Apr 8.
6
Synergistic drug combinations from electronic health records and gene expression.
J Am Med Inform Assoc. 2017 May 1;24(3):565-576. doi: 10.1093/jamia/ocw161.
7
Implementation and Outcomes of a Collaborative Multi-Center Network Aimed at Web-Based Cognitive Training - COGWEB Network.
JMIR Ment Health. 2014 Nov 27;1(1):e2. doi: 10.2196/mental.3840. eCollection 2014 Jul-Dec.
8
Nanoparticle formulation of ormeloxifene for pancreatic cancer.
Biomaterials. 2015;53:731-43. doi: 10.1016/j.biomaterials.2015.02.082. Epub 2015 Mar 26.
10
Pros and cons of the tuberculosis drugome approach--an empirical analysis.
PLoS One. 2014 Jun 27;9(6):e100829. doi: 10.1371/journal.pone.0100829. eCollection 2014.

本文引用的文献

1
Malignant glioma drug discovery - targeting protein kinases.
Expert Opin Drug Discov. 2007 Jan;2(1):1-17. doi: 10.1517/17460441.2.1.1.
2
How to design multi-target drugs.
Expert Opin Drug Discov. 2007 Jun;2(6):799-808. doi: 10.1517/17460441.2.6.799.
3
Selective inhibition of HER2-positive breast cancer cells by the HIV protease inhibitor nelfinavir.
J Natl Cancer Inst. 2012 Oct 17;104(20):1576-90. doi: 10.1093/jnci/djs396. Epub 2012 Oct 5.
4
Concerted perturbation observed in a hub network in Alzheimer's disease.
PLoS One. 2012;7(7):e40498. doi: 10.1371/journal.pone.0040498. Epub 2012 Jul 16.
5
Predicting new indications for approved drugs using a proteochemometric method.
J Med Chem. 2012 Aug 9;55(15):6832-48. doi: 10.1021/jm300576q. Epub 2012 Jul 25.
6
Large-scale prediction and testing of drug activity on side-effect targets.
Nature. 2012 Jun 10;486(7403):361-7. doi: 10.1038/nature11159.
7
Identification of FDA-approved drugs that computationally bind to MDM2.
Chem Biol Drug Des. 2012 Oct;80(4):631-7. doi: 10.1111/j.1747-0285.2012.01428.x. Epub 2012 Jul 23.
8
Prediction of drug-target interactions and drug repositioning via network-based inference.
PLoS Comput Biol. 2012;8(5):e1002503. doi: 10.1371/journal.pcbi.1002503. Epub 2012 May 10.
9
FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols.
J Mol Model. 2012 Sep;18(9):4263-74. doi: 10.1007/s00894-012-1416-1. Epub 2012 May 8.
10
Predicting new molecular targets for rhein using network pharmacology.
BMC Syst Biol. 2012 Mar 21;6:20. doi: 10.1186/1752-0509-6-20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验