Suppr超能文献

肥胖诱导的组织自由基生成:体内免疫自旋捕获研究。

Obesity-induced tissue free radical generation: an in vivo immuno-spin trapping study.

机构信息

Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.

出版信息

Free Radic Biol Med. 2012;52(11-12):2312-9. doi: 10.1016/j.freeradbiomed.2012.04.011. Epub 2012 Apr 21.

Abstract

Assessment of tissue free radical production is routinely accomplished by measuring secondary by-products of redox reactions and/or diminution of key antioxidants such as reduced thiols. However, immuno-spin trapping, a newly developed immunohistochemical technique for detection of free radical formation, is garnering considerable interest as it allows for the visualization of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-adducted molecules. Yet, to date, immuno-spin trapping reports have utilized in vivo models in which successful detection of free radical adducts required exposure to lethal levels of oxidative stress not reflective of chronic inflammatory disease. To study the extents and anatomic locations of more clinically relevant levels of radical formation, we examined tissues from high-fat (HF) diet-fed mice, a model of low-grade chronic inflammation known to demonstrate enhanced rates of reactive species production. Mice subjected to 20 weeks of HF diet displayed increased free radical formation (anti-DMPO mean fluorescence staining) in skeletal muscle (0.863±0.06 units vs 0.512±0.07 units), kidney (0.076±0.0036 vs 0.043±0.0025), and liver (0.275±0.012 vs 0.135±0.014) compared to control mice fed normal laboratory chow (NC). Western blot analysis of tissue homogenates confirmed these results showing enhanced DMPO immunoreactivity in HF mice compared to NC samples. The obesity-related results were confirmed in a rat model of pulmonary hypertension and right heart failure in which intense immunodetectable radical formation was observed in the lung and right ventricle of monocrotaline-treated rats compared to saline-treated controls. Combined, these data affirm the utility of immuno-spin trapping as a tool for in vivo assessment of altered extents of macromolecule oxidation to radical intermediates under chronic inflammatory conditions.

摘要

组织中自由基生成的评估通常通过测量氧化还原反应的次级副产物和/或关键抗氧化剂(如还原型硫醇)的减少来完成。然而,免疫自旋捕获,一种新开发的用于检测自由基形成的免疫组织化学技术,由于允许可视化 5,5-二甲基-1-吡咯啉 N-氧化物(DMPO)加合物分子,因此引起了相当大的兴趣。然而,迄今为止,免疫自旋捕获报告已经利用了体内模型,在这些模型中,成功检测自由基加合物需要暴露于不反映慢性炎症性疾病的致死水平的氧化应激下。为了研究更具临床相关性的自由基形成程度和解剖位置,我们检查了高脂肪(HF)饮食喂养的小鼠组织,该模型是一种已知具有增强活性物种产生率的低水平慢性炎症模型。接受 20 周 HF 饮食的小鼠在骨骼肌(抗 DMPO 平均荧光染色:0.863±0.06 单位比 0.512±0.07 单位)、肾脏(0.076±0.0036 比 0.043±0.0025)和肝脏(0.275±0.012 比 0.135±0.014)中显示出自由基形成增加(与对照相比),而对照小鼠则喂食正常实验室饲料(NC)。组织匀浆的 Western blot 分析证实了这些结果,表明 HF 小鼠中的 DMPO 免疫反应性增强。在肺动脉高压和右心衰竭的大鼠模型中,肥胖相关结果得到了证实,其中在给予单硝酸异山梨酯的大鼠的肺和右心室中观察到强烈的免疫可检测自由基形成,而在给予生理盐水的对照中则没有。综上所述,这些数据证实了免疫自旋捕获作为一种工具,可用于在慢性炎症条件下评估大分子氧化为自由基中间体的改变程度。

相似文献

1
Obesity-induced tissue free radical generation: an in vivo immuno-spin trapping study.
Free Radic Biol Med. 2012;52(11-12):2312-9. doi: 10.1016/j.freeradbiomed.2012.04.011. Epub 2012 Apr 21.
2
Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas.
Biochim Biophys Acta. 2013 Dec;1832(12):2153-61. doi: 10.1016/j.bbadis.2013.08.004. Epub 2013 Aug 17.
3
In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis.
Free Radic Biol Med. 2013 Oct;63:351-60. doi: 10.1016/j.freeradbiomed.2013.05.026. Epub 2013 May 28.
5
Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.
Redox Biol. 2016 Aug;8:422-9. doi: 10.1016/j.redox.2016.04.003. Epub 2016 Apr 22.
6
In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.
Antioxid Redox Signal. 2018 May 20;28(15):1404-1415. doi: 10.1089/ars.2017.7390. Epub 2017 Dec 11.
7
OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.
Free Radic Biol Med. 2015 Oct;87:157-68. doi: 10.1016/j.freeradbiomed.2015.06.026. Epub 2015 Jun 26.
8
UVA-ketoprofen-induced hemoglobin radicals detected by immuno-spin trapping.
Photochem Photobiol. 2003 Jun;77(6):585-91. doi: 10.1562/0031-8655(2003)077<0585:uhrdbi>2.0.co;2.
9
In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping.
Free Radic Biol Med. 2013 Dec;65:828-837. doi: 10.1016/j.freeradbiomed.2013.08.172. Epub 2013 Aug 23.
10
Measurement of intracellular biomolecular oxidation in liver ischemia-reperfusion injury via immuno-spin trapping.
Free Radic Biol Med. 2012 Aug 1;53(3):406-14. doi: 10.1016/j.freeradbiomed.2012.05.028. Epub 2012 May 23.

引用本文的文献

2
Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure.
Biomedicines. 2023 Mar 15;11(3):917. doi: 10.3390/biomedicines11030917.
3
Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment.
J Cereb Blood Flow Metab. 2023 Jun;43(6):905-920. doi: 10.1177/0271678X231152551. Epub 2023 Jan 18.
4
Extracellular biomolecular free radical formation during injury.
Free Radic Biol Med. 2022 Aug 1;188:175-184. doi: 10.1016/j.freeradbiomed.2022.06.223. Epub 2022 Jun 17.
5
Oxidative Stress and Its Implications in the Right Ventricular Remodeling Secondary to Pulmonary Hypertension.
Front Physiol. 2019 Sep 24;10:1233. doi: 10.3389/fphys.2019.01233. eCollection 2019.
6
Multiorgan Development of Oxidative and Nitrosative Stress in LPS-Induced Endotoxemia in C57Bl/6 Mice: DHE-Based Approach.
Oxid Med Cell Longev. 2019 May 22;2019:7838406. doi: 10.1155/2019/7838406. eCollection 2019.
7
Direct and indirect associations between dietary magnesium intake and breast cancer risk.
Sci Rep. 2019 Apr 8;9(1):5764. doi: 10.1038/s41598-019-42282-y.
8
The neurosurgical wound and factors that can affect cosmetic, functional, and neurological outcomes.
Int Wound J. 2019 Feb;16(1):71-78. doi: 10.1111/iwj.12993. Epub 2018 Sep 24.
9
Adipose tissue-derived free fatty acids initiate myeloid cell accumulation in mouse liver in states of lipid oversupply.
Am J Physiol Endocrinol Metab. 2018 Nov 1;315(5):E758-E770. doi: 10.1152/ajpendo.00172.2018. Epub 2018 Aug 7.

本文引用的文献

1
Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses.
J Biol Chem. 2012 Jan 27;287(5):2984-95. doi: 10.1074/jbc.M111.309062. Epub 2011 Dec 4.
2
Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations.
Free Radic Biol Med. 2012 Jan 1;52(1):1-6. doi: 10.1016/j.freeradbiomed.2011.09.030. Epub 2011 Oct 2.
3
The Western-style diet: a major risk factor for impaired kidney function and chronic kidney disease.
Am J Physiol Renal Physiol. 2011 Nov;301(5):F919-31. doi: 10.1152/ajprenal.00068.2011. Epub 2011 Aug 31.
5
AGE-RAGE interaction and oxidative stress in obesity-related renal dysfunction.
Kidney Int. 2011 Jul;80(2):133-5. doi: 10.1038/ki.2011.86.
7
The role of oxidative stress in the metabolic syndrome.
Rev Cardiovasc Med. 2011;12(1):21-9. doi: 10.3909/ricm0555.
8
High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production.
Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1047-58. doi: 10.1152/ajpendo.00666.2010. Epub 2011 Mar 8.
10
Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.
Free Radic Biol Med. 2010 Apr 15;48(8):983-1001. doi: 10.1016/j.freeradbiomed.2010.01.028. Epub 2010 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验