Department of Information Systems Engineering, Hansung University, 389 Samseon-dong 2-ga, Seongbuk-gu 136-792, Seoul, Republic of Korea.
Comput Med Imaging Graph. 2012 Jul;36(5):366-74. doi: 10.1016/j.compmedimag.2012.04.001. Epub 2012 May 5.
Maximum intensity projection (MIP) is an important visualization method that has been widely used for the diagnosis of enhanced vessels or bones by rotating or zooming MIP images. With the rapid spread of multidetector-row computed tomography (MDCT) scanners, MDCT scans of a patient generate a large data set. However, previous acceleration methods for MIP rendering of such a data set failed to generate MIP images at interactive rates. In this paper, we propose novel culling methods in both object and image space for interactive MIP rendering of large medical data sets. In object space, for the visibility test of a block, we propose the initial occluder resulting from a preceding image to utilize temporal coherence and increase the block culling ratio a lot. In addition, we propose the hole filling method using the mesh generation and rendering to improve the culling performance during the generation of the initial occluder. In image space, we find out that there is a trade-off between the block culling ratio in object space and the culling efficiency in image space. In this paper, we classify the visible blocks into two types by their visibility. And we propose a balanced culling method by applying a different culling algorithm in image space for each type to utilize the trade-off and improve the rendering speed. Experimental results on twenty CT data sets showed that our method achieved 3.85 times speed up in average without any loss of image quality comparing with conventional bricking method. Using our visibility culling method, we achieved interactive GPU-based MIP rendering of large medical data sets.
最大密度投影(MIP)是一种重要的可视化方法,通过旋转或缩放 MIP 图像,广泛用于增强血管或骨骼的诊断。随着多排螺旋 CT(MDCT)扫描仪的迅速普及,患者的 MDCT 扫描会生成大量数据集。然而,以前用于此类数据集的 MIP 渲染的加速方法无法以交互速率生成 MIP 图像。在本文中,我们提出了在对象空间和图像空间中用于交互渲染大型医学数据集的新剔除方法。在对象空间中,对于块的可见性测试,我们提出了利用时间一致性并大大提高块剔除率的先前图像产生的初始遮挡器。此外,我们提出了使用网格生成和渲染的空洞填充方法,以在生成初始遮挡器期间提高剔除性能。在图像空间中,我们发现对象空间中的块剔除率和图像空间中的剔除效率之间存在折衷。在本文中,我们通过其可见性将可见块分类为两种类型。并且我们通过为每种类型在图像空间中应用不同的剔除算法来提出一种平衡剔除方法,以利用这种折衷并提高渲染速度。二十个 CT 数据集的实验结果表明,与传统的分块方法相比,我们的方法在不损失图像质量的情况下平均实现了 3.85 倍的加速。使用我们的可见性剔除方法,我们实现了大型医学数据集的交互式基于 GPU 的 MIP 渲染。