MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
PLoS Comput Biol. 2012;8(4):e1002486. doi: 10.1371/journal.pcbi.1002486. Epub 2012 Apr 26.
Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells.
逆转录转座子因其在多能细胞或发育中的生殖细胞中扩增的能力而在哺乳动物基因组中高度普遍。沉默生殖细胞和多能细胞中逆转录转座子的宿主机制对于限制进化过程中基因组中重复元件的积累非常重要。然而,尽管可以相对较好地研究选定的单个逆转录转座子的沉默,但许多哺乳动物逆转录转座子很少被分析,它们在生殖细胞、多能细胞或体细胞中的沉默仍然知之甚少。在这里,我们展示并实验验证了,Illumina 和 Affymetrix 基因表达微阵列平台中存在的隐匿重复元件探针可以准确且灵敏地监测重复元件表达数据。这种全基因组逆转录转座子表达的计算方法使我们能够确定组蛋白去乙酰化酶 Hdac1 是小鼠胚胎干细胞中逆转录转座子沉默机制的一个组成部分,并确定了这些细胞中 Hdac1 的逆转录转座子靶标。我们还鉴定了一些逆转录转座子是其他逆转录转座子沉默机制的靶标,如 DNA 甲基化、Eset 介导的组蛋白修饰和 Ring1B/Eed 包含的多梳抑制复合物在小鼠胚胎干细胞中。此外,我们对逆转录转座子沉默的计算分析表明,多个沉默机制独立地靶向胚胎干细胞中的逆转录转座子,同一逆转录转座子的不同基因组拷贝对这些沉默机制的敏感性不同,并且有助于定义沉默机制靶向的逆转录转座子序列元件。因此,基因表达微阵列数据的重复注释表明,沉默机制之间的复杂相互作用抑制了生殖细胞和胚胎干细胞中的逆转录转座子位点。