Suppr超能文献

基于蒙特卡罗特征选择和规则的模型预测轻度认知障碍患者的阿尔茨海默病。

Monte Carlo feature selection and rule-based models to predict Alzheimer's disease in mild cognitive impairment.

机构信息

Postgraduate School for Molecular Medicine, Żwirki i Wigury 61 Street, 02-091, Warsaw, Poland.

出版信息

J Neural Transm (Vienna). 2012 Jul;119(7):821-31. doi: 10.1007/s00702-012-0812-0. Epub 2012 May 10.

Abstract

The objective of the present study was to evaluate a Monte Carlo feature selection (MCFS) and rough set Rosetta pipeline for generating rule-based models as a tool for comprehensive risk estimates for future Alzheimer's disease (AD) in individual patients with mild cognitive impairment (MCI). Risk estimates were generated on the basis of age, gender, Mini-Mental State Examination scores, apolipoprotein E (APOE) genotype and the cerebrospinal fluid (CSF) biomarkers total tau (T-tau), phospho-tau(181) (P-tau) and the 42 amino acid form of amyloid β (Aβ42) in two sets of longitudinally followed MCI patients (n = 217 in total). The predictive model was created in Rosetta, evaluated with the standard tenfold cross-validation approach and tested on an external set. Features were ranked and selected by the MCFS algorithm. Using the combined pipeline of MCFS and Rosetta, it was possible to predict AD among patients with MCI with an area under the receiver operating characteristics curve of 0.92. Risk estimates were produced for the individual patients and showed good correlation with actual diagnosis in cross validation, and on an external dataset from a new study. Analysis of the importance of attributes showed that the biochemical CSF markers contributed the most to the predictions, and that added value was gained by combining several biochemical markers. Despite a correlation with the biochemical markers, the genetic marker APOE ε4 did not contribute to the predictive power of the model.

摘要

本研究的目的是评估一种蒙特卡罗特征选择(MCFS)和粗糙集 Rosetta 管道,以生成基于规则的模型,作为对轻度认知障碍(MCI)患者未来发生阿尔茨海默病(AD)的综合风险估计的工具。风险估计是基于年龄、性别、简易精神状态检查评分、载脂蛋白 E(APOE)基因型以及脑脊液(CSF)生物标志物总 tau(T-tau)、磷酸化 tau(181)(P-tau)和 42 个氨基酸形式的淀粉样蛋白β(Aβ42)在两组纵向随访的 MCI 患者中(总共 217 例)生成的。该预测模型是在 Rosetta 中创建的,用标准的十折交叉验证方法进行评估,并在外部数据集上进行测试。特征由 MCFS 算法进行排序和选择。使用 MCFS 和 Rosetta 的联合管道,有可能在 MCI 患者中预测 AD,其接收者操作特征曲线下的面积为 0.92。为个体患者生成风险估计,并在交叉验证和来自新研究的外部数据集上显示与实际诊断具有良好的相关性。对属性重要性的分析表明,生物化学 CSF 标志物对预测的贡献最大,并且通过结合几个生物化学标志物可以获得附加值。尽管与生物化学标志物相关,但遗传标志物 APOE ε4 并未为模型的预测能力做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验