Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden.
BMC Bioinformatics. 2014 May 12;15:139. doi: 10.1186/1471-2105-15-139.
The use of classification algorithms is becoming increasingly important for the field of computational biology. However, not only the quality of the classification, but also its biological interpretation is important. This interpretation may be eased if interacting elements can be identified and visualized, something that requires appropriate tools and methods.
We developed a new approach to detecting interactions in complex systems based on classification. Using rule-based classifiers, we previously proposed a rule network visualization strategy that may be applied as a heuristic for finding interactions. We now complement this work with Ciruvis, a web-based tool for the construction of rule networks from classifiers made of IF-THEN rules. Simulated and biological data served as an illustration of how the tool may be used to visualize and interpret classifiers. Furthermore, we used the rule networks to identify feature interactions, compared them to alternative methods, and computationally validated the findings.
Rule networks enable a fast method for model visualization and provide an exploratory heuristic to interaction detection. The tool is made freely available on the web and may thus be used to aid and improve rule-based classification.
分类算法在计算生物学领域的应用变得越来越重要。然而,不仅分类的质量很重要,其生物学解释也很重要。如果能够识别和可视化相互作用的元素,这将有助于进行解释,而这需要适当的工具和方法。
我们开发了一种新的基于分类的复杂系统相互作用检测方法。我们之前使用基于规则的分类器提出了一种规则网络可视化策略,该策略可作为寻找相互作用的启发式方法。现在,我们使用 Ciruvis 对此项工作进行了补充,Ciruvis 是一个基于网络的工具,用于从由 IF-THEN 规则组成的分类器构建规则网络。模拟和生物学数据说明了如何使用该工具可视化和解释分类器。此外,我们使用规则网络来识别特征相互作用,将其与其他方法进行比较,并通过计算验证了这些发现。
规则网络为模型可视化提供了一种快速方法,并提供了一种交互检测的探索性启发式方法。该工具在网络上免费提供,因此可用于辅助和改进基于规则的分类。