Suppr超能文献

Ciruvis:一个基于网络的工具,用于使用基于规则的分类器进行规则网络和交互检测。

Ciruvis: a web-based tool for rule networks and interaction detection using rule-based classifiers.

机构信息

Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden.

出版信息

BMC Bioinformatics. 2014 May 12;15:139. doi: 10.1186/1471-2105-15-139.

Abstract

BACKGROUND

The use of classification algorithms is becoming increasingly important for the field of computational biology. However, not only the quality of the classification, but also its biological interpretation is important. This interpretation may be eased if interacting elements can be identified and visualized, something that requires appropriate tools and methods.

RESULTS

We developed a new approach to detecting interactions in complex systems based on classification. Using rule-based classifiers, we previously proposed a rule network visualization strategy that may be applied as a heuristic for finding interactions. We now complement this work with Ciruvis, a web-based tool for the construction of rule networks from classifiers made of IF-THEN rules. Simulated and biological data served as an illustration of how the tool may be used to visualize and interpret classifiers. Furthermore, we used the rule networks to identify feature interactions, compared them to alternative methods, and computationally validated the findings.

CONCLUSIONS

Rule networks enable a fast method for model visualization and provide an exploratory heuristic to interaction detection. The tool is made freely available on the web and may thus be used to aid and improve rule-based classification.

摘要

背景

分类算法在计算生物学领域的应用变得越来越重要。然而,不仅分类的质量很重要,其生物学解释也很重要。如果能够识别和可视化相互作用的元素,这将有助于进行解释,而这需要适当的工具和方法。

结果

我们开发了一种新的基于分类的复杂系统相互作用检测方法。我们之前使用基于规则的分类器提出了一种规则网络可视化策略,该策略可作为寻找相互作用的启发式方法。现在,我们使用 Ciruvis 对此项工作进行了补充,Ciruvis 是一个基于网络的工具,用于从由 IF-THEN 规则组成的分类器构建规则网络。模拟和生物学数据说明了如何使用该工具可视化和解释分类器。此外,我们使用规则网络来识别特征相互作用,将其与其他方法进行比较,并通过计算验证了这些发现。

结论

规则网络为模型可视化提供了一种快速方法,并提供了一种交互检测的探索性启发式方法。该工具在网络上免费提供,因此可用于辅助和改进基于规则的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ff/4030460/e688721cc4f3/1471-2105-15-139-1.jpg

相似文献

1
Ciruvis: a web-based tool for rule networks and interaction detection using rule-based classifiers.
BMC Bioinformatics. 2014 May 12;15:139. doi: 10.1186/1471-2105-15-139.
2
RuleMonkey: software for stochastic simulation of rule-based models.
BMC Bioinformatics. 2010 Jul 30;11:404. doi: 10.1186/1471-2105-11-404.
5
Classification based on pruning and double covered rule sets for the internet of things applications.
ScientificWorldJournal. 2014 Jan 5;2014:984375. doi: 10.1155/2014/984375. eCollection 2014.
6
Improving rule-based classification using Harmony Search.
PeerJ Comput Sci. 2019 Nov 18;5:e188. doi: 10.7717/peerj-cs.188. eCollection 2019.
7
An integrated method for cancer classification and rule extraction from microarray data.
J Biomed Sci. 2009 Feb 24;16(1):25. doi: 10.1186/1423-0127-16-25.
8
On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems.
Biosystems. 2005 Aug;81(2):101-12. doi: 10.1016/j.biosystems.2005.02.003.
9
GeNeCK: a web server for gene network construction and visualization.
BMC Bioinformatics. 2019 Jan 7;20(1):12. doi: 10.1186/s12859-018-2560-0.

引用本文的文献

1
Genetic interactions effects for cancer disease identification using computational models: a review.
Med Biol Eng Comput. 2021 Apr;59(4):733-758. doi: 10.1007/s11517-021-02343-9. Epub 2021 Apr 11.
2
R.ROSETTA: an interpretable machine learning framework.
BMC Bioinformatics. 2021 Mar 6;22(1):110. doi: 10.1186/s12859-021-04049-z.
3
Primary Tumor Site Specificity is Preserved in Patient-Derived Tumor Xenograft Models.
Front Genet. 2019 Aug 13;10:738. doi: 10.3389/fgene.2019.00738. eCollection 2019.
4
Identification of the copy number variant biomarkers for breast cancer subtypes.
Mol Genet Genomics. 2019 Feb;294(1):95-110. doi: 10.1007/s00438-018-1488-4. Epub 2018 Sep 10.
7
Combinatorial identification of DNA methylation patterns over age in the human brain.
BMC Bioinformatics. 2016 Sep 23;17(1):393. doi: 10.1186/s12859-016-1259-3.

本文引用的文献

1
Rule-based models of the interplay between genetic and environmental factors in childhood allergy.
PLoS One. 2013 Nov 19;8(11):e80080. doi: 10.1371/journal.pone.0080080. eCollection 2013.
3
Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?
Brief Bioinform. 2013 May;14(3):315-26. doi: 10.1093/bib/bbs034. Epub 2012 Jul 10.
4
Monte Carlo feature selection and rule-based models to predict Alzheimer's disease in mild cognitive impairment.
J Neural Transm (Vienna). 2012 Jul;119(7):821-31. doi: 10.1007/s00702-012-0812-0. Epub 2012 May 10.
5
On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data.
Bioinformatics. 2010 Jul 15;26(14):1752-8. doi: 10.1093/bioinformatics/btq257. Epub 2010 May 26.
7
Bioinformatics challenges for genome-wide association studies.
Bioinformatics. 2010 Feb 15;26(4):445-55. doi: 10.1093/bioinformatics/btp713. Epub 2010 Jan 6.
8
Predictive rule inference for epistatic interaction detection in genome-wide association studies.
Bioinformatics. 2010 Jan 1;26(1):30-7. doi: 10.1093/bioinformatics/btp622. Epub 2009 Oct 30.
9
Finding the missing heritability of complex diseases.
Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.
10
Circos: an information aesthetic for comparative genomics.
Genome Res. 2009 Sep;19(9):1639-45. doi: 10.1101/gr.092759.109. Epub 2009 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验