Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
Free Radic Biol Med. 2012 Jul 15;53(2):260-70. doi: 10.1016/j.freeradbiomed.2012.04.033. Epub 2012 May 8.
Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that Ir-induced G2/M arrest contributed to the increase in the mitochondrial ROS level by accumulating cells in the G2/M phase.
虽然电离辐射(Ir)会立即导致水辐射分解产物的形成,其中包含一些活性氧(ROS),但ROS 也被认为是从受照射细胞中的生物来源释放出来的。现在越来越清楚的是,这些 Ir 后产生的 ROS 具有多种生物学作用。虽然线粒体被认为是负责产生 Ir 诱导的 ROS 的,但仍需要阐明 Ir 如何触发它。因此,我们进行了这项研究,以破译 Ir 诱导的线粒体 ROS 产生的机制。在人肺癌 A549 细胞中,Ir(X 射线 10Gy)诱导线粒体 ROS 水平的时间依赖性增加。Ir 还增加了线粒体膜电位、线粒体呼吸和线粒体 ATP 产生,表明 Ir 后线粒体电子传递链(ETC)功能上调。虽然我们发现 Ir 轻微增强了线粒体 ETC 复合物 II 的活性,但复合物 II 抑制剂 3-硝基丙酸未能降低 Ir 诱导的线粒体 ROS 产生。同时,我们观察到 Ir 后线粒体质量和线粒体 DNA 水平上调,表明 Ir 增加了细胞中线粒体的含量。因为已知受照射的细胞在检查点机制的控制下经历细胞周期停滞,所以我们检查了细胞周期与线粒体含量和细胞氧化应激水平之间的关系。我们发现,与 G1 或 S 期细胞相比,处于 G2/M 期的细胞具有更高的线粒体含量和细胞氧化应激水平,无论细胞是否受到照射。我们还发现,Ir 诱导的 G2/M 期细胞积累导致具有高线粒体含量和细胞氧化应激水平的细胞增加。这表明 Ir 上调了线粒体 ETC 功能和线粒体含量,导致线粒体 ROS 的产生,而 Ir 诱导的 G2/M 期停滞通过积累 G2/M 期细胞导致线粒体 ROS 水平增加。