Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy.
Anal Bioanal Chem. 2013 Jan;405(2-3):665-77. doi: 10.1007/s00216-012-5997-4. Epub 2012 May 12.
To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.
为了深入了解植物对非生物胁迫的响应,本研究在暴露于有毒金属(铬)或干旱条件前后,测定了长柄烟草(Nicotiana langsdorffii)样本的离子组特征。这些植物被大鼠糖皮质激素受体(GR)或根癌农杆菌 rolC 基因遗传转化,因为这些修饰已知会导致植物体内植物激素平衡失衡,并显著改变植物的防御反应。元素谱是通过开发和应用基于电感耦合等离子体原子发射和质谱(ICP-AES/MS)的分析程序获得的。特别是,通过使用动态反应池,在优化相关条件后,消除了对 ICP-MS 测定 Cr 和 V 的同量异位素干扰。ICP 原子发射和质谱的联合使用使我们能够在植物不同部位(根、茎和叶)中测定 29 种主要和微量元素(Ba、Bi、Ca、Cd、Co、Cr、Cu、Eu、Fe、Ga、K、Li、Mg、Mn、Mo、Na、P、Pb、Pt、Rb、S、Sb、Sn、Sr、Te、V、W、Y 和 Zn),具有高精度和高精确度。多元数据分析和元素分布模式研究为目标生物对化学处理或水分胁迫的离子组响应提供了新信息。遗传修饰主要影响 Bi、Cr、Mo、Na 和 S 的分布,表明这些元素参与了由 GR 或 rolC 基因控制的生化过程。化学胁迫强烈影响了几种元素(Ba、Ca、Fe、Ga、K、Li、Mn、Mo、Na、P、Pb、Rb、S、Sn、Te、V 和 Zn)的积累,其影响方式与其他研究中用其他过渡金属(如 Cu 和 Cd)处理后的情况非常相似。水分亏缺的影响不明显,主要表现为根中 Ba、Cr、Na 和 Sr 的减少。