Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
J Comp Physiol B. 2012 Oct;182(7):921-34. doi: 10.1007/s00360-012-0668-5. Epub 2012 May 12.
The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000 μatm by 2100, and over 1,900 μatm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 μatm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 μatm CO(2), with full compensation by 2 and 4 h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3)(-) free seawater compromised compensation. This suggests branchial HCO(3)(-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900 μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3)(-) are not known, it seems likely that chronically elevated blood HCO(3)(-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2).
由于大气中二氧化碳(CO2)的上升,海洋碳酸盐系统正在迅速变化,预计到 2100 年,当前水平将上升到 750 到 1000 微atm 之间,到 2300 年将超过 1900 微atm。升高的 CO2 对海洋钙化生物的影响已经得到了广泛的研究;然而,即将到来的 CO2 水平对硬骨鱼酸碱平衡和呼吸生理的影响尚未被检测到。通过配对实验设计,对这些生理过程进行了检查,结果表明,24 小时暴露于 1000 和 1900 微atm CO2 会导致海湾蟾鱼(Opsanus beta)出现典型的补偿性呼吸性酸中毒反应。时程实验表明,在暴露于 1900 和 1000 微atm CO2 15 分钟后,酸中毒开始发生,分别在 2 和 4 小时时完全补偿。1900 微atm 的暴露还导致在 24 小时后,肌肉细胞内 pH 值显著增加。1900 微atm 对鳃部酸通量没有影响;然而,高碳酸血症和 HCO3-自由海水暴露会损害补偿作用。这表明,呼吸性酸中毒的代偿反应部分依赖于鳃部 HCO3-的摄取,而非酸的排出。暴露于 1900 微atm 会导致碳酸酐酶和 slc4a2 表达下调,以及暴露 24 小时后 Na+/K+ATPase 活性降低。在 1900 微atm 暴露期间,牛碳酸酐酶的输注对血液酸碱平衡状态没有影响,但消除了 1000 微atm CO2 的呼吸影响。目前的研究结果清楚地表明,预测的近未来 CO2 水平会影响呼吸气体的运输和酸碱平衡。虽然血液中 HCO3-增加的全部生理影响尚不清楚,但似乎慢性高血液 HCO3-水平可能会损害多个生理系统,并且可能进一步解释了最近报道的在暴露于升高的 CO2 期间耳石生长增加的现象。