Suppr超能文献

RNA测序的计算分析

Computational analysis of RNA-seq.

作者信息

Givan Scott A, Bottoms Christopher A, Spollen William G

机构信息

Department of Molecular Microbiology and Immunology, Informatics Research Core Facility, University of Missouri, Columbia, MO, USA.

出版信息

Methods Mol Biol. 2012;883:201-19. doi: 10.1007/978-1-61779-839-9_16.

Abstract

Using High-Throughput DNA Sequencing (HTS) to examine gene expression is rapidly becoming a -viable choice and is typically referred to as RNA-seq. Often the depth and breadth of coverage of RNA-seq data can exceed what is achievable using microarrays. However, the strengths of RNA-seq are often its greatest weaknesses. Accurately and comprehensively mapping millions of relatively short reads to a reference genome sequence can require not only specialized software, but also more structured and automated procedures to manage, analyze, and visualize the data. Additionally, the computational hardware required to efficiently process and store the data can be a necessary and often-overlooked component of a research plan. We discuss several aspects of the computational analysis of RNA-seq, including file management and data quality control, analysis, and visualization. We provide a framework for a standard nomenclature -system that can facilitate automation and the ability to track data provenance. Finally, we provide a general workflow of the computational analysis of RNA-seq and a downloadable package of scripts to automate the processing.

摘要

使用高通量DNA测序(HTS)来检测基因表达正迅速成为一种可行的选择,通常被称为RNA测序。RNA测序数据的覆盖深度和广度常常能超过使用微阵列所能达到的程度。然而,RNA测序的优势往往也是其最大的劣势。要将数百万条相对较短的 reads 准确且全面地比对到参考基因组序列上,不仅需要专门的软件,还需要更结构化、自动化的程序来管理、分析和可视化数据。此外,高效处理和存储数据所需的计算硬件可能是研究计划中一个必要且常被忽视的组成部分。我们讨论了RNA测序计算分析的几个方面,包括文件管理、数据质量控制、分析和可视化。我们提供了一个标准命名系统的框架,该框架有助于实现自动化以及追踪数据来源的能力。最后,我们提供了RNA测序计算分析的一般工作流程以及一个可下载的脚本包,用于自动化处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验