Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.
Circ Res. 2012 Jul 6;111(2):180-90. doi: 10.1161/CIRCRESAHA.112.270462. Epub 2012 May 15.
Although bone marrow endothelial progenitor cell (EPC)-based therapies improve the symptoms in patients with ischemic heart disease, their limited plasticity and decreased function in patients with existing heart disease limit the full benefit of EPC therapy for cardiac regenerative medicine.
We hypothesized that reprogramming mouse or human EPCs, or both, using small molecules targeting key epigenetic repressive marks would lead to a global increase in active gene transcription, induce their cardiomyogenic potential, and enhance their inherent angiogenic potential.
Mouse Lin-Sca1(+)CD31(+) EPCs and human CD34(+) cells were treated with inhibitors of DNA methyltransferases (5-Azacytidine), histone deacetylases (valproic acid), and G9a histone dimethyltransferase. A 48-hour treatment led to global increase in active transcriptome, including the reactivation of pluripotency-associated and cardiomyocyte-specific mRNA expression, whereas endothelial cell-specific genes were significantly upregulated. When cultured under appropriate differentiation conditions, reprogrammed EPCs showed efficient differentiation into cardiomyocytes. Treatment with epigenetic-modifying agents show marked increase in histone acetylation on cardiomyocyte and pluripotent cell-specific gene promoters. Intramyocardial transplantation of reprogrammed mouse and human EPCs in an acute myocardial infarction mouse model showed significant improvement in ventricular functions, which was histologically supported by their de novo cardiomyocyte differentiation and increased capillary density and reduced fibrosis. Importantly, cell transplantation was safe and did not form teratomas.
Taken together, our results suggest that epigenetically reprogrammed EPCs display a safe, more plastic phenotype and improve postinfarct cardiac repair by both neocardiomyogenesis and neovascularization.
尽管基于骨髓内皮祖细胞(EPC)的治疗可改善缺血性心脏病患者的症状,但由于现有心脏病患者的 EPC 可塑性有限且功能下降,EPC 治疗对心脏再生医学的全部益处受到限制。
我们假设使用针对关键表观遗传抑制标记的小分子对小鼠或人类 EPC 进行重编程,或者两者兼而有之,将导致活跃基因转录的全面增加,诱导其心肌生成潜能,并增强其内在的血管生成潜能。
用 DNA 甲基转移酶抑制剂(5-氮杂胞苷)、组蛋白去乙酰化酶抑制剂(丙戊酸)和 G9a 组蛋白二甲基转移酶抑制剂处理小鼠 Lin-Sca1(+)CD31(+)EPC 和人 CD34(+)细胞。48 小时的处理导致活跃转录组的全面增加,包括多能性相关和心肌细胞特异性 mRNA 表达的重新激活,而内皮细胞特异性基因则显著上调。在适当的分化条件下培养时,重编程的 EPC 可有效分化为心肌细胞。用表观遗传修饰剂处理可显著增加心肌细胞和多能细胞特异性基因启动子上的组蛋白乙酰化。在急性心肌梗死小鼠模型中,将重编程的小鼠和人类 EPC 移植到心肌内,可显著改善心室功能,其组织学特征是新分化的心肌细胞和增加的毛细血管密度以及减少的纤维化。重要的是,细胞移植是安全的,不会形成畸胎瘤。
总之,我们的结果表明,表观遗传重编程的 EPC 表现出安全,更具可塑性的表型,并通过新生心肌生成和新生血管化改善梗死后的心脏修复。