Suppr超能文献

三种方法在遗传工具、风险因素和结果均为二分类时孟德尔随机化的比较。

A comparison of three methods of Mendelian randomization when the genetic instrument, the risk factor and the outcome are all binary.

机构信息

University Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland.

出版信息

PLoS One. 2012;7(5):e35951. doi: 10.1371/journal.pone.0035951. Epub 2012 May 9.

Abstract

The method of instrumental variable (referred to as Mendelian randomization when the instrument is a genetic variant) has been initially developed to infer on a causal effect of a risk factor on some outcome of interest in a linear model. Adapting this method to nonlinear models, however, is known to be problematic. In this paper, we consider the simple case when the genetic instrument, the risk factor, and the outcome are all binary. We compare via simulations the usual two-stages estimate of a causal odds-ratio and its adjusted version with a recently proposed estimate in the context of a clinical trial with noncompliance. In contrast to the former two, we confirm that the latter is (under some conditions) a valid estimate of a causal odds-ratio defined in the subpopulation of compliers, and we propose its use in the context of Mendelian randomization. By analogy with a clinical trial with noncompliance, compliers are those individuals for whom the presence/absence of the risk factor X is determined by the presence/absence of the genetic variant Z (i.e., for whom we would observe X = Z whatever the alleles randomly received at conception). We also recall and illustrate the huge variability of instrumental variable estimates when the instrument is weak (i.e., with a low percentage of compliers, as is typically the case with genetic instruments for which this proportion is frequently smaller than 10%) where the inter-quartile range of our simulated estimates was up to 18 times higher compared to a conventional (e.g., intention-to-treat) approach. We thus conclude that the need to find stronger instruments is probably as important as the need to develop a methodology allowing to consistently estimate a causal odds-ratio.

摘要

工具变量(当工具是遗传变异时称为孟德尔随机化)的方法最初是为了在线性模型中推断风险因素对感兴趣的某些结果的因果效应而开发的。然而,将这种方法应用于非线性模型被认为是有问题的。在本文中,我们考虑了当遗传工具、风险因素和结果都是二进制的简单情况。我们通过模拟比较了通常的两阶段因果优势比估计及其调整版本与最近在不合规临床试验背景下提出的估计。与前两个相比,我们确认后一个在某些条件下是符合者子集中因果优势比的有效估计(在符合者子集中,无论在受孕时随机接受的等位基因如何,风险因素 X 的存在/不存在都由遗传变异 Z 决定),并建议在孟德尔随机化的背景下使用它。与不合规临床试验类似,符合者是指那些其风险因素 X 的存在/不存在由遗传变异 Z 的存在/不存在决定的个体(即,对于我们来说,无论在受孕时随机接受的等位基因如何,我们都会观察到 X = Z)。我们还回顾并说明了工具较弱时工具变量估计的巨大可变性(即,符合者的比例较低,通常情况下,遗传工具的符合者比例通常小于 10%),我们模拟估计的四分位距比传统(例如,意向治疗)方法高出了 18 倍。因此,我们得出结论,寻找更强有力的工具可能与开发一种能够一致估计因果优势比的方法一样重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc57/3348907/043463fa4c94/pone.0035951.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验