Jiang Lai, Oualkacha Karim, Didelez Vanessa, Ciampi Antonio, Rosa-Neto Pedro, Benedet Andrea L, Mathotaarachchi Sulantha, Richards John Brent, Greenwood Celia M T
Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
Department of Epidemiology, Biostatistics and Occupational Health and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
Genet Epidemiol. 2019 Jun;43(4):373-401. doi: 10.1002/gepi.22184. Epub 2019 Jan 12.
In Mendelian randomization (MR), inference about causal relationship between a phenotype of interest and a response or disease outcome can be obtained by constructing instrumental variables from genetic variants. However, MR inference requires three assumptions, one of which is that the genetic variants only influence the outcome through phenotype of interest. Pleiotropy, that is, the situation in which some genetic variants affect more than one phenotype, can invalidate these genetic variants for use as instrumental variables; thus a naive analysis will give biased estimates of the causal relation. Here, we present new methods (constrained instrumental variable [CIV] methods) to construct valid instrumental variables and perform adjusted causal effect estimation when pleiotropy exists and when the pleiotropic phenotypes are available. We demonstrate that a smoothed version of CIV performs approximate selection of genetic variants that are valid instruments, and provides unbiased estimates of the causal effects. We provide details on a number of existing methods, together with a comparison of their performance in a large series of simulations. CIV performs robustly across different pleiotropic violations of the MR assumptions. We also analyzed the data from the Alzheimer's disease (AD) neuroimaging initiative (ADNI; Mueller et al., 2005. Alzheimer's Dementia, 11(1), 55-66) to disentangle causal relationships of several biomarkers with AD progression.
在孟德尔随机化(MR)中,可以通过从基因变异构建工具变量来推断感兴趣的表型与反应或疾病结局之间的因果关系。然而,MR推断需要三个假设,其中之一是基因变异仅通过感兴趣的表型影响结局。多效性,即某些基因变异影响不止一种表型的情况,会使这些基因变异不能用作工具变量;因此,简单的分析会给出因果关系的有偏估计。在这里,我们提出了新的方法(约束工具变量[CIV]方法),以在存在多效性且多效性表型可用时构建有效的工具变量并进行调整后的因果效应估计。我们证明,CIV的平滑版本能对有效工具的基因变异进行近似选择,并提供因果效应的无偏估计。我们详细介绍了一些现有方法,并在一系列大型模拟中比较了它们的性能。CIV在MR假设的不同多效性违反情况下表现稳健。我们还分析了阿尔茨海默病(AD)神经影像学倡议(ADNI;Mueller等人,2005年。《阿尔茨海默病与痴呆》,11(1),55 - 66)的数据,以厘清几种生物标志物与AD进展之间的因果关系。