Suppr超能文献

在流行病学研究中测量分子生物标志物:实验室技术和生物样本考虑因素。

Measuring molecular biomarkers in epidemiologic studies: laboratory techniques and biospecimen considerations.

机构信息

Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Stat Med. 2012 Sep 28;31(22):2400-13. doi: 10.1002/sim.4485. Epub 2012 May 17.

Abstract

The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling.

摘要

个性化医学的未来取决于能否高效快速地阐明一组可靠的疾病特异性分子生物标志物。已经开发了高通量分子生物标志物分析方法,以鉴定人类临床样本中的疾病风险、诊断、预后和治疗靶点。目前,高通量筛选允许我们从一个样本中分析数千个标记物,或从数千个样本中分析一个标记物,最终将允许我们从数千个样本中分析数千个标记物。不幸的是,当前高通量方法、临床标本和分析成本的固有性质通常会限制广泛的高通量生物标志物分析。这篇综述总结了目前适用于遗传流行病学和基于人群的纵向研究的临床标本高通量生物标志物筛选的现状,重点介绍了与生物标本、实验室技术和样本混合相关的考虑因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验