Richard S. Ruiz Department of Ophthalmology and Visual Science, University of Texas Medical School, Houston, Texas 77030, USA.
J Neurosci. 2012 May 16;32(20):6747-59. doi: 10.1523/JNEUROSCI.5087-11.2012.
Many neurons are coupled by electrical synapses into networks that have emergent properties. In the retina, coupling in these networks is dynamically regulated by changes in background illumination, optimizing signal integration for the visual environment. However, the mechanisms that control this plasticity are poorly understood. We have investigated these mechanisms in the rabbit AII amacrine cell, a multifunctional retinal neuron that forms an electrically coupled network via connexin 36 (Cx36) gap junctions. We find that presynaptic activity of glutamatergic ON bipolar cells drives increased phosphorylation of Cx36, indicative of increased coupling in the AII network. The phosphorylation is dependent on activation of nonsynaptic NMDA receptors that colocalize with Cx36 on AII amacrine cells, and is mediated by CaMKII. This activity-dependent increase in Cx36 phosphorylation works in opposition to dopamine-driven reduction of phosphorylation, establishing a local dynamic regulatory mechanism, and accounting for the nonlinear control of AII coupling by background illumination.
许多神经元通过电突触耦合形成具有涌现性质的网络。在视网膜中,这些网络的耦合通过背景光照的变化被动态调节,从而优化了对视觉环境的信号整合。然而,控制这种可塑性的机制还知之甚少。我们已经在兔 AII 无长突细胞中研究了这些机制,AII 无长突细胞是一种多功能视网膜神经元,通过连接蛋白 36(Cx36)间隙连接形成电耦合网络。我们发现,谷氨酸能 ON 双极细胞的突触前活动驱动 Cx36 的磷酸化增加,表明 AII 网络中的耦合增加。这种磷酸化依赖于与 Cx36 在 AII 无长突细胞上共定位的非突触 NMDA 受体的激活,并由 CaMKII 介导。这种由活动引起的 Cx36 磷酸化增加与多巴胺驱动的磷酸化减少相反,建立了一个局部动态调节机制,并解释了背景光照对 AII 耦合的非线性控制。