Bioinformatics and Information Mining, University of Konstanz, 78457 Konstanz, Germany.
BMC Med Inform Decis Mak. 2012 Apr 30;12 Suppl 1(Suppl 1):S2. doi: 10.1186/1472-6947-12-S1-S2.
The calcium-imaging technique allows us to record movies of brain activity in the antennal lobe of the fruitfly Drosophila melanogaster, a brain compartment dedicated to information about odors. Signal processing, e.g. with source separation techniques, can be slow on the large movie datasets.
We have developed an approximate Principal Component Analysis (PCA) for fast dimensionality reduction. The method samples relevant pixels from the movies, such that PCA can be performed on a smaller matrix. Utilising a priori knowledge about the nature of the data, we minimise the risk of missing important pixels.
Our method allows for fast approximate computation of PCA with adaptive resolution and running time. Utilising a priori knowledge about the data enables us to concentrate more biological signals in a small pixel sample than a general sampling method based on vector norms.
Fast dimensionality reduction with approximate PCA removes a computational bottleneck and leads to running time improvements for subsequent algorithms. Once in PCA space, we can efficiently perform source separation, e.g to detect biological signals in the movies or to remove artifacts.
钙成像技术使我们能够记录果蝇触角叶(专门用于记录气味信息的脑区)中的大脑活动电影。信号处理,例如使用源分离技术,在大型电影数据集上可能会很慢。
我们开发了一种快速降维的近似主成分分析(PCA)方法。该方法从电影中采样相关像素,以便在较小的矩阵上执行 PCA。利用关于数据性质的先验知识,我们将重要像素丢失的风险降到最低。
我们的方法允许快速近似计算具有自适应分辨率和运行时间的 PCA。利用关于数据的先验知识,使我们能够在小像素样本中集中更多的生物信号,而不是基于向量范数的一般采样方法。
使用近似 PCA 进行快速降维可以消除计算瓶颈,并提高后续算法的运行时间。进入 PCA 空间后,我们可以有效地进行源分离,例如检测电影中的生物信号或去除伪影。