Department of Neurophysiology, Brain Research Institute, University of Zurich, Switzerland.
Nat Methods. 2010 May;7(5):399-405. doi: 10.1038/nmeth.1453. Epub 2010 Apr 18.
Two-photon calcium imaging of neuronal populations enables optical recording of spiking activity in living animals, but standard laser scanners are too slow to accurately determine spike times. Here we report in vivo imaging in mouse neocortex with greatly improved temporal resolution using random-access scanning with acousto-optic deflectors. We obtained fluorescence measurements from 34-91 layer 2/3 neurons at a 180-490 Hz sampling rate. We detected single action potential-evoked calcium transients with signal-to-noise ratios of 2-5 and determined spike times with near-millisecond precision and 5-15 ms confidence intervals. An automated 'peeling' algorithm enabled reconstruction of complex spike trains from fluorescence traces up to 20-30 Hz frequency, uncovering spatiotemporal trial-to-trial variability of sensory responses in barrel cortex and visual cortex. By revealing spike sequences in neuronal populations on a fast time scale, high-speed calcium imaging will facilitate optical studies of information processing in brain microcircuits.
双光子钙成像技术可对活体动物的神经元群体进行光学记录,但其标准激光扫描仪的速度太慢,无法准确确定尖峰时间。在这里,我们报告了在使用声光偏转器进行随机访问扫描的情况下,使用随机访问扫描以大大提高时间分辨率的活体成像。我们以 180-490 Hz 的采样率从 34-91 层 2/3 神经元获得荧光测量值。我们检测到单个动作电位引发的钙瞬变,其信噪比为 2-5,并以近毫秒的精度和 5-15 毫秒的置信区间确定尖峰时间。自动化的“剥皮”算法能够从荧光迹线重建高达 20-30 Hz 频率的复杂尖峰序列,揭示了桶状皮层和视觉皮层中感觉反应的时空试验间变异性。通过快速时间尺度上揭示神经元群体中的尖峰序列,高速钙成像将促进大脑微电路中信息处理的光学研究。